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Changelog

In the following, we describe the changes between the Round 1 submission of SNOVA
dated May 25, 2023, and the Round 2 adjustments, along with brief explanations of
the motivations behind the changes.

Additional Submitters

We add one new member to our team: Jan Adriaan Leegwater.

Changes to the SNOVA Public Map

Round 2 SNOVA public map. These changes are motivated by the cryptanalysis
that has been performed during Round 1. For i ∈ {1, . . . ,m}, the public map of
SNOVA will be:

P̃i(U) = F̃i(T (U)) =
l2+l−1∑
α=0

n∑
j=1

n∑
k=1

Ai,α · U t
j (Qi,α,1Pi′,jkQi,α,2)Uk ·Bi,α

where i′ = i+ α mod m.

- Mixing Pi of the public map

- Increasing the number of terms in the summation over α. More precisely, we
changed the index of the summation from α = 1, . . . , l2 to α = 0, . . . , l2+ l−1.

- Varying ABQ matrices (which refers to Ai,α, Bi,α, Qi,α,1 and Qi,α,2 matrices in
the public map of SNOVA) also with index i.

- Using fixed ABQ matrices when l ≤ 3.

In the Round 1 evaluation, SNOVA met NIST’s security requirements against key
recovery attacks (with slight adjustment on l = 2 parameters). The primary threats
to SNOVA’s security were forgery attacks proposed by Beullens and Cabarcas et al.,
as discussed in Section 5.2.3 and Section 5.2.4. However, both attacks are highly
sensitive to the rank of the ER matrix. When the ER matrix does not experience
significant rank reduction, the efficiency of these attacks diminishes considerably.
This is precisely the case for Round 2 SNOVA. Consequently, SNOVA’s security is
no longer compromised by these attacks.
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Changed and Added Parameters

- Update vinegar parameters for l = 2 as a response to cryptanalysis.

Table 1: SNOVA l = 2 parameter sets

Security Level Round 1 Round 2

I (28, 17, 16, 2) (37, 17, 16, 2)
III (43, 25, 16, 2) (56, 25, 16, 2)
V (61, 33, 16, 2) (75, 33, 16, 2)

- Add l = 5 parameter sets as these offer attractive public key sizes.

Table 2: SNOVA l = 5 parameter sets

Security Level l = 5 parameter sets

III (24, 5, 16, 5)
V (29, 6, 16, 5)

Other Changes

- Option for the public key expansion. We add the option to use SHAKE
for public key expansion.

- AVX2 implementation. We have implemented an AVX2 version of SNOVA,
which significantly improves system execution efficiency compared to the Round
1 SNOVA implementation. For more information, we refer to Table 7.

- Updated security analysis. We have updated our security analysis. During
Round 1 evaluation, a large number of papers with cryptanalysis of SNOVA
were published [34, 37, 11, 16, 41, 2]. We explored and adjusted our analysis
to address the known attack methods. In the updated security analysis, we
provide the complexity corresponding to each attack. The Round 2 security
analysis also focuses on the forgery attacks against SNOVA. In the observed
forgery attacks [8, 16], a crucial point is the rank of ER matrix in the attack.
With the adjustments made in Round 2, we found that neither of these forgery
attacks poses a threat to the security of SNOVA.

- Editorial changes to the specification. We corrected typos and made the
notation in the document more consistent.
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1 Algorithm Specification (2.B.1)

In this supporting document, we present a detailed specification of multivariate
signature scheme SNOVA: Simple Noncommutative unbalanced Oil and Vinegar
scheme with randomness Alignment. In the following sections, Introduction and
Preliminaries, we adapt and slightly modify paragraphs from Wang et al. [64, 65].

1.1 Introduction

SNOVA is a variant of the Unbalanced Oil and Vinegar (UOV) signature scheme,
designed to operate over noncommutative rings for enhanced efficiency and reduced
public key size.

Unbalanced Oil and Vinegar. The Unbalanced Oil and Vinegar (UOV) signa-
ture scheme [35] is a slight modification of the Oil and Vinegar (OV) [48] signature
scheme, proposed by Patarin in 1997. The UOV signature scheme has been stud-
ied and analyzed for a long time. To this day, it is still believed to be a secure
scheme. However, as a multivariate signature scheme, it still suffers from the prob-
lem of having excessively large public keys. In the literature, fundamental public
key compression methods have been proposed. A. Petzoldt [50, 51] and Rainbow
[21] of the third-round of NIST proposal showed that part of the randomness of the
private key can be transferred to the public key and then a large part of public key
can be generated by a PRNG (Pseudorandom Number Generator) which we called
“randomness alignment” technique here. This reduces the public key size of UOV
to the order O(m3 · log q).

For the modern parameters of UOV which aiming at NIST security level I [44], the
public key sizes are about 40KB to 60KB. However, these public key sizes of the
UOV scheme are still too large. To alleviate this problem, new possibilities have
come to light. By generalizing the UOV scheme to noncommutative rings, we can
further reduce the size of the public key.

SNOVA signature scheme. SNOVA is a variant of UOV with smaller public key
sizes. In SNOVA, we see several advantages:

- By building on noncommutative rings, we can reduce the size of the public
key while still maintaining the advantage of short signatures.

- The randomness alignment key-compression technique of Petzoldt [50] can be
successfully adapted to SNOVA without being affected by noncommutativity.

- There is an intuitive connection between SNOVA and UOV. In the case that
l = 1 of the underlying matrix ring, SNOVA reduces to a UOV scheme.
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We propose parameter settings aiming for NIST security levels I, III, and V. For
security level I, our l = 4 parameter set results in a public key size of 1016 bytes
and a signature size of 248 bytes. With these performances, we believe that the
SNOVA scheme has strong competitiveness compared to other post-quantum signa-
ture schemes.

1.2 Preliminaries

1.2.1 Notations and Conventions

The following Tables 3, 4 are tables that list some symbols fixed with specific mean-
ing and some conventions on notations, respectively.

Table 3: The table of symbols fixed with specific meaning in this paper.

Symbol Description

Fq finite field of order q

R Matl×l(Fq), matrix ring consisting of l × l matrices over Fq

v number of vinegar variables

o number of oil variables

S symmetric matrix in R with its characteristic polynomial
irreducible over Fq

n = v + o number of variables

m = o number of equations

F = [F1, · · · , Fm] central map of the ring UOV scheme

F̃ =
[
F̃1, · · · , F̃m

]
central map of the SNOVA scheme

T invertible linear map in signature scheme

[T ] matrix corresponding to T

P = [P1, · · · , Pm] public map of the ring UOV scheme

P̃ =
[
P̃1, · · · , P̃m

]
public map of the SNOVA scheme

O oil space

MQ(N,M, q) complexity of an MQ (Multivariate Quadratic) system of M
equations in N variables over Fq

A⊗n the block diagonal matrix with n copies of A on the block
diagonal
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Table 4: The table of conventions on notations in this paper.

Description The font denoted with Example

Integers lower case letters n, m and l

Elements in R upper case letters A, S and Q

Variables over R upper case letters X1, · · · , Xn

Elements in Fq lower case letters a0, · · · , al−1

Variables over Fq lower case letters x1, · · · , xn

Vectors of any dimension boldface letters X and x

Vector spaces and rings calligraphic font O and R

The (j, k)-th entry of the
matrix [Fi], [T ] and [Pi],
respectively

subscript j, k Fi,jk, Tjk and Pi,jk

1.2.2 Basic Notions

MQ problem. Let Fq be a finite field of order q. Given M quadratic polynomials
P (x) = [P1(x), · · · , PM(x)] in N variables x = (x1, · · · , xN)

t and a vector y ∈ FM
q ,

the MQ (Multivariate Quadratic) problem is to find a vector u ∈ FN
q such that

P (u) = [P1(u), · · · , PM(u)] = y. This problem is known to be NP-hard [30]. Note
that it is generically expected to be exponentially hard in the case N ∼ M and it
can be solved in polynomial time for M ≥ N(N+1)

2
or N ≥M(M + 1) [8].

In this paper, we use MQ(N,M, q) to denote the complexity of solving such an MQ
problem. There are several algorithms to solve a multivariate quadratic system of
M equations in N variables over finite fields such as F4 [25], F5 [26] and XL variants
[20, 66].

Polar forms. The polar form of a homogeneous multivariate quadratic map P (x) =
[P1(x), · · · , PM(x)] is defined to be the map

P ′(x,y) = [P ′
1(x,y), · · · , P ′

M(x,y)]

where for each i ∈ {1, . . . ,M} the polar form of Pi(x) is defined by

P ′
i (x,y) = Pi(x+ y)− Pi(x)− Pi(y).

Note that each P ′
i is symmetric and bilinear. If we write the quadratic map into

the form of Pi(x) = xt [Pi]x where [Pi] is the matrix representation of Pi then the
matrix representation of P ′

i is

[P ′
i ] = [Pi] + [Pi]

t .
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1.2.3 NIST Security Level.

In [43], NIST suggested several security levels for post-quantum cryptosystem de-
sign. In the new call for additional digital signature scheme project, NIST slightly
modified their security level request. Herein, we focus on levels I, III, and V. The
NIST security levels I, III and V require that a classical attacker needs 2143, 2207

and 2272 classical gates to break the scheme, and 261, 2125 and 2189 quantum gates
for a quantum attacker, respectively.

The number of gates required for an attack against a digital signature scheme can
be computed by

♯gates = ♯field multiplication · (2 · (log2 q)2 + log2 q)

with the assumption that one field multiplication in the field Fq needs about (log2 q)
2

bit multiplications and same for bit additions, and for each field multiplication in
the computation, it also needs an addition of field elements, each takes log2 q bit
additions.

Table 5: NIST Security Level.

Security Level Classical gates Quantum gates

I 143 61
III 207 125
V 272 189

1.2.4 Unbalanced Oil and Vinegar Signature (UOV) Scheme

The Unbalanced Oil and Vinegar (UOV) signature scheme [35] signature scheme is
a slight modification of the Oil and Vinegar (OV) [48] signature scheme, proposed
by Patarin in 1997. This scheme is based on a trapdoor map F which is easily
inverted and it also can resist the KS attack [36] on OV. A (v, o, q) UOV signature
scheme with v > o is defined with a triple of positive integers so that the number of
variables n = v + o, the number of equations m = o, and over Fq.

Central map. The central map of the UOV scheme is F = [F1, · · · , Fm] : Fn
q → Fm

q

where each Fi is of the form

Fi =
v∑

j=1

n∑
k=j

fi,jkxjxk.

The coefficients fi,jk’s are chosen randomly from Fq. Note that each Fi is a homo-
geneous quadratic polynomials in n variables which has no terms xjxk for j, k =
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v + 1, · · · , n over Fq. The variables x1, · · · , xv are called the vinegar variables and
xv+1, · · · , xn are called the oil variables.

Private key and Public key. The private key of UOV is the pair (F, T ) where
T : Fn

q → Fn
q is an invertible linear map which is randomly chosen. The map

P = F ◦ T : Fn
q → Fm

q where Pi = Fi ◦ T . The quadratic form of Pi is Pi = ut [Pi]u

where u = (u1, · · · , un)
t and [Pi] = [T ]t [Fi] [T ] where [T ] is the matrix related to T .

Oil space, O. The special structure of F in the UOV scheme indicates that F
vanishes on the linear space O = {x = (x1, . . . , xn)

t ∈ Fn
q : x1 = · · · = xv = 0}

called the oil space of central map F , and hence the oil space of public key P will
be the space T−1(O).

1.3 Parameter Space of the SNOVA Scheme

The parameter set of a SNOVA scheme is completely described by a quadruple
(v, o, q, l) of positive integers with induced parameters m = o and n = v + o as
explained below.

- v, the number of vinegar variables over the noncommutative ring R.

- o, the number of oil variables over the noncommutative ring R and we require
that o < v.

- q, the order of the underlying finite field Fq of characteristic two.

- l, the size of the noncommutative ring R = Matl×l(Fq).

- m = o, the number of quadratic equations over R in the central map and
public map.

- n = v+ o, the number of variables over R in the central map and public map.

1.4 Design Rationale

We believe that multivariate cryptosystems are useful in cryptography. However, for
multivariate cryptosystems over fields, there are abundance of cryptanalysis tools
available such as F4, F5,XL [25, 26, 20]. Also, the problem of suffering large public
key size makes their application less practical. Therefore, we are determined to
design multivariate cryptosystems over noncommutative rings and also to solve the
problem of suffering large public key size.
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Due to its simplicity, UOV [35] is an ideal test ground of these ideas. Although the
idea of using noncommutative rings applies to general noncommutative rings, we
decide to start from the matrix ring R = Matl×l(Fq). And also using finite fields
not of characteristic two is possible, using finite fields of characteristic two enjoys
the benefits of possible tricks of speeding in computation.

It would be not wise to simply generalize UOV over finite fields to over noncommu-
tative rings, which means those skills in attacking UOV over finite fields might be
applicable to UOV over noncommutative rings (may be called ring UOV). Therefore,
we adopt multiplication with other random matrices before and after the ring UOV
and summing them together. The multiplication with other random matrices and
then summing together happens to scramble the entries in Fq and hence make the
sparsity of the matrix multiplication disappear.

The above is done with a trade-off in computation speed, which we think it is
justifiable. Also, to further solve the problem of large public key size, we find that
the technique of shifting the randomness of the private key to a part of the public key
(which may be called key-randomness alignment) [50] and in combination of using
PRNG with seeds applicable to multivariate cryptosystems over noncommutative
rings. The result is an amazing success in reducing the key sizes substantially at the
same security level.

In the first round of evaluation, several attacks were proposed [34, 37, 11, 16, 41, 2].
We are very grateful for these analyses, and building on them, we made some mi-
nor adjustments. After these adjustments, we believe that SNOVA remains highly
competitive while meeting NIST security requirements. Additionally, we have intro-
duced some new l = 5 parameter sets, which not only show promising performance
but also bring new possibilities. On the other hand, by proposing a potential alter-
native, we would like to demonstrate the flexibility of the SNOVA.

1.5 Ring UOV

In order to enhance the comprehension of SNOVA, we now introduce an interme-
diary phase called ring UOV, which generalizes UOV to any noncommutative ring
R. Other schemes using noncommutative rings with different techniques have been
proposed [27, 70]. Similar to UOV, let n = v + o and m = o. Due to the noncom-
mutativity of R we need to explicitly denote the following index set which will be
used below by

Ω = {(j, k) : 1 ≤ j, k ≤ n} \ {(j, k) : v + 1 ≤ j, k ≤ n}.

The basic structure of ring UOV. The central map of ring UOV is the map
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F = [F1, · · · , Fm] : Rn → Rm with each Fi defined by

Fi(X1, . . . , Xn) =
∑

(j,k)∈Ω

ϕ(Xj)Fi,jkXk

where the coefficients Fi,jk are randomly chosen from R. The map ϕ is a ring

map with “factor order reversed” property, i.e., ϕ
(∑

j CjXj

)
=
∑

j ϕ (Xj)ϕ (Cj)

where Cj ∈ R. The (ring) variables X1, . . . , Xv are called the vinegar variables and
Xv+1, · · · , Xn are called the oil variables.

A concrete example of ring UOV. For the purpose of explaining SNOVA, we
now fix the noncommutative ring to be R = Matl×l(Fq) and the ring map ϕ to be
the matrix transpose. Then, we have a (v, o, q, l)-ring UOV scheme.

Due to these specification, the i-th component, for i ∈ {1, 2, . . . ,m}, of the central
map F = [F1, · · · , Fm] : Rn → Rm becomes

Fi(X1, . . . , Xn) =
∑

(j,k)∈Ω

X t
jFi,jkXk.

Note that we can write Fi into quadratic form over R. That is,

Fi(X) = Xt [Fi]X

where X = (X1, . . . , Xn)
t and the matrix representation [Fi] over R corresponding

to Fi is of the form

[Fi] =
[
Fi,jk

]
=

[
F 11
i F 12

i

F 21
i 0

]
,

F 11
i , F 12

i and F 21
i are matrices over R of size v × v, v × o and o× v, respectively.

The public map P = [P1, · · · , Pm] is the composition of central map F and an
invertible ring linear map T : Rn → Rn, i.e.,

P (U) = (F ◦ T )(U)

where Pi(U) = (Fi ◦ T )(U) for each i ∈ {1, 2, . . . ,m}.

The map T is defined by its matrix representation

[T ] =

[
I11 T 12

0 I22

]
where T 12 is a v × o random matrix over R and I11, I22 are identity matrices over
R of size v × v and o× o, respectively.

Public key and private key. For each i ∈ {1, . . . ,m}, we have

Pi(U) = (Fi ◦ T )(U) = Ut
(
[T ]t [Fi] [T ]

)
U.
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Therefore, the public keys are [P1] , . . . , [Pm] where

[Pi] =
[
Pi,jk

]
= [T ]t [Fi] [T ]

for i ∈ {1, · · · ,m}. The private key is (F, T ), i.e., the matrix [T ] and the matrices
[Fi].

1.6 SNOVA Signature Scheme

In this section, we introduce SNOVA signature scheme whose central map is a mod-
ified ring UOV map. In order to eliminate the sparsity of ring UOV map (when we
regard it as a UOV map over field), some specific matrices will be introduced into
the ring UOV map.

1.6.1 Description

Let v, o be positive integers with v > o and Fq be of characteristic 2. We choose
Fq = GF(16) for our implementation. Let n = v + o and m = o. Next, we will
introduce the subring of the matrix ring R, Fq[S]. Last, we will define a (v, o, q, l)
SNOVA scheme.

Subring Fq[S] and elements in Fq[S]. Let S be a l × l symmetric matrix with
an irreducible characteristic polynomial. The subring Fq[S] of R is defined as

Fq[S] = {a0 + a1S + · · ·+ al−1S
l−1 | a0, a1, · · · , al−1 ∈ Fq}.

As the characteristic polynomial of S is irreducible, Fq[S] is a field. Thus, the
elements in Fq[S] are symmetric and they all commute.

Let
Ω = {(j, k) : 1 ≤ j, k ≤ n} \ {(j, k) : v + 1 ≤ j, k ≤ n}.

This index set Ω is defined by the Oil-Vinegar structure.

Central map. For i ∈ {1, . . . ,m}, we define

[Fi] =
[
Fi,jk

]
=

[
F 11
i F 12

i

F 21
i 0

]
where F 11

i , F 12
i and F 21

i are matrices over R randomly generated of size v× v, v× o
and o× v, respectively.

We use random matrices and [F1] , . . . , [Fm] to construct the central map.
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First, we randomly choose invertible elements Ai,α and Bi,α from R, and invertible
elements Qi,α,1 and Qi,α,2 from Fq[S].

The central map of SNOVA scheme is F̃ =
[
F̃1, · · · , F̃m

]
: Rn → Rm, for i ∈

{1, · · · ,m}, F̃i is defined to be

F̃i(X1, . . . , Xn) =
l2+l−1∑
α=0

Ai,α ·

 ∑
(j,k)∈Ω

X t
j (Qi,α,1Fi′,jkQi,α,2)Xk

 ·Bi,α

where i′ = (i + α) mod m and Fi′,jk is the (j, k)-th entry of [Fi′ ]. Changes to the
Round 1 central map are: the sum over α has been extended from l2 to l2+l elements,
the ABQ matrices now depend not only on α but also on i, and Fi′ depends on both
i and α.

Invertible linear map. The invertible linear map in SNOVA scheme is the map
T : Rn → Rn corresponding to the matrix

[T ] = [Tij] =

[
I11 T 12

0 I22

]
,

where T 12 is a v × o matrix consisting of nonzero entries Tij chosen randomly in
Fq[S]. Note that Tij is symmetric and commutes with other elements in Fq[S]. In
particular, Tij commutes with Qi,α,1 and Qi,α,2. The matrices I11 and I22 are identity
matrices over R. Therefore, [T ] is invertible and hence T . Note that since Fq is of
characteristic 2, the matrix [T−1] = [T ].

Public map. We construct the public key [P1] , . . . , [Pm] via the congruence relation

[P1] =
[
P1,j,k

]
= [T ]t [F1] [T ] , . . . , [Pm] =

[
Pm,j,k

]
= [T ]t [Fm] [T ] .

The public map of SNOVA is P̃ = F̃ ◦ T . For i ∈ {1, 2, . . . ,m}, P̃i = F̃i ◦ T . Then,
by the relation X = [T ] ·U where U = (U1, · · · , Un) ∈ Rn and the commutativity
of Fq[S], we have that

P̃i(U) = F̃i(T (U)) =
l2+l−1∑
α=0

n∑
j=1

n∑
k=1

Ai,α · U t
j (Qi,α,1Pi′,jkQi,α,2)Uk ·Bi,α

where i′ = (i + α) mod m and Pi′,jk is the (j, k)-th entry of matrix [Pi′ ]. By

introducing the matrices Ai,α, Bi,α, Qi,α,1, Qi,α,2, the public map P̃ is not a sparse
UOV map when we regard it as over Fq.

Public key. The public key are the matrices [Pi] and the matrices Ai,α, Bi,α, Qi,α,1

and Qi,α,2 for α = 0, 1, . . . , l2+ l−1, or simply the seed spublic which generates them.
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By utilizing matrices [Pi] and the seed spublic, the verifier is capable to obtain the

public map P̃ and subsequently verify the received signature.

Private key. The private key of SNOVA is (F, T ), i.e., the matrix [T ] and the
matrices [Fi] for i = 1, 2, . . . ,m. Note that we can use the private seed sprivate to
generate T .

Signature. LetD be the document to be signed andHash(D) = Y = (Y1, · · · , Ym) ∈
Rm be its hash value. We compute the signature U step by step. First, we assign
values to vinegar variables X1, · · · , Xv randomly and the resulting system can be
seen as a linear system over the Fq-entries of oil variables Xv+1, · · · , Xn. The re-
maining is the same as in UOV scheme by regarding SNOVA as a UOV over Fq.
Secondly, the signature is U = T−1(X) ∈ Rn.

Verification. Let U = (U1, · · · , Un) ∈ Rn be the signature to be verified. If

Hash(D) = P̃ (U), then the signature is accepted, otherwise rejected.

1.6.2 Key Generation Process of SNOVA

We give the standard key generation process of SNOVA and the key generation
process with key-randomness alignment technique. Note that in SNOVA scheme, Fq

is of the characteristic 2.

Standard key generation process. For i ∈ {1, . . . ,m}, the matrix [Pi] is obtained
by relation

[T ]t [Fi] [T ] = [Pi] =

[
P 11
i P 12

i

P 21
i P 22

i

]
.

Then, we have the following

P 11
i = F 11

i

P 12
i = F 11

i T 12 + F 12
i

P 21
i = (T 12)tF 11

i + F 21
i

P 22
i = (T 12)t ·

(
F 11
i T 12 + F 12

i

)
+ F 21

i T 12.

Therefore, to generate the public key we generate the matrices [Fi], [T ] from a seed
sprivate at first and then compute the public key [Pi] for i ∈ {1, . . . ,m} with the
formulas above.

Key generation with randomness alignment. The following are steps of key
generation process of SNOVA with key randomness alignment.
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First Step: Fix an l × l symmetric matrix S with irreducible characteristic poly-
nomial. Generate P 11

i , P 12
i and P 21

i for i ∈ {1, . . . ,m} from public seed spublic.
Generate [T ] from private seed sprivate. We also generate the matrices Ai,α, Bi,α,
Qi,α,1 and Qi,α,2 for α = 0, 1, . . . , l2+ l−1 from spublic or, if l ≤ 3, we generate these
matrices from a fixed seed.

Second Step: Compute the matrix F 11
i , F 12

i , F 21
i , P 22

i for i = 1, · · · ,m as below.

For i = 1, 2, . . . ,m, we have

[Fi] =
[
T−1

]t
[Pi]

[
T−1

]
= [T ]t [Pi] [T ] .

Therefore, the following equations hold

F 11
i = P 11

i

F 12
i = P 11

i T 12 + P 12
i

F 21
i = (T 12)tP 11

i + P 21
i

0 = F 22
i = (T 12)t ·

(
P 11
i T 12 + P 12

i

)
+ P 21

i T 12 + P 22
i .

In other words, we then have

P 22
i =

(
T 12
)t · (P 11

i T 12 + P 12
i

)
+ P 21

i T 12.

1.6.3 To Attain EUF-CMA Security

For practical considerations, we use a random binary vector, called salt in order
to achieve Existential Unforgeability under Chosen Message Attack (EUF-CMA)
Security [45, 53].

Signature. Let D be the document to be sign, we randomly choose salt and then
generate a signature for the hash value Y = Hash(spublic||Hash(D)||salt) where
spublic is the seed used to generate the public key of SNOVA scheme.

Therefore, the corresponding signature with salt is of the form σ = (U||salt) where
U is the signature ofY generated by the SNOVA signer. While there is no immediate
security risk if salts are used more than once, each signature generated should use
a different random value of salt. Therefore, the length of salt is chosen to be 16
bytes under the assumption of up to 264 signatures being generated with the system
[44].

Verification. If P̃ (U) = Hash(spublic||Hash(D)||salt), the signature is accepted,
otherwise rejected.



SNOVA 18

1.7 Implementation Details

In this section, we describe the details about implementations.

For all parameter settings, we implement two variants of SNOVA scheme:

- SNOVA-ssk: In this variant, the suffix “ssk” stand for “seed-type secret key”.
Secret key only stores the information of seeds. This means the private key
expansion and the expansion of the random part of the public key are included
in both the key generation procedure and the signing procedure of the signer.
In other words, the Algorithms 3, 5 and 7 are part of both key generation
process and signing process.

- SNOVA-esk: In this variant, the suffix “esk” represents “expanded secret key”.
Therefore, the private key expansion is only a part of key generation procedure
and then the expanded secret key is stored and directly accessed when the
signer intends to sign. That is, the Algorithms 3, 5 and 7 are only used in
key generation process.

In SNOVA scheme, several hash functions and PRNG are needed. An implemen-
tation may choose to introduce a function to convert a seeded secret key into an
expanded secret key if multiple signatures are to be created. We consider this an
implementation choice and not a part of the specification of SNOVA. We categorize
the parts that needed hash functions and PRNG and explain which instance we take
in each case:

- The length of private key seed, |sprivate|: 32 bytes.

- The length of public key seed, |spublic|: 16 bytes.

- The length of salt, |salt|: 16 bytes.

- The hash function which is used to generate private key T : SHAKE256.

- The hash function which is used to generate the random part of public key:
AES128 or SHAKE.

- The digest of the document D: digest = Hash(D).

- The hash function which is used to to generate the hash value to be signed
HashSHAKE256(spublic||Hash(D)||salt): SHAKE256.

- The hash function which is used to generate vinegar values we used in signature
generation, HashSHAKE256(sprivate||digest||salt||numsig): SHAKE256.

- Nibble ordering: Most algorithms below use nibbles, 4-bit elements, of the
hashe or PRNG output. The lowest 4 bits are used first (index 0) the high 4
bits next (index 1). Pad with 0 if the number of nibbles needed is odd.
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To generate the longer random part of the public key efficiently, we have adopted
AES128-CTR encryption. This involves using the public key seed as the encryption
key and encrypting a zero plaintext block with a zero nonce. The resulting ciphertext
serves as the pseudo-random output for generating the random part of the public
key.

A variant that uses SHAKE (Secure Hash Algorithm KECCAK) for the public key
expansion has been added in the Round 2 submission as an alternative to AES128-
CTR. This variant can be both vectorized and indexed. We denote the XOF (eX-
tendable Output Function) of this variant as SNOVA SHAKE. The algorithm of
SNOVA SHAKE can be described by: extract the bytes from SHAKE128 in 168
bytes blocks where a block index is appended to the seed. The block size 168 follows
from the rate of SHAKE128. SNOVA SHAKE is specified by: Let SHAKE128(seed,
n) denote the n-th byte of the SHAKE128 XOF when instantiated with seed as input,
and similarly SNOVA SHAKE(seed, n). Then for all required bytes:

SNOVA SHAKE(seed, n) = SHAKE128(seed || floor(n / 168), (n mod 168))

where floor(n / 168) is the 8 bytes little-endian representation of n / 168 rounded
to below, || represents concatenation of bytes and mod is the integer modulus op-
eration. We have used SHAKE from XKCP in the official implementation [54].

1.8 Constants and Tables

The finite field F16. Fix an irreducible polynomial f(x) = x4 + x+ 1 over F2 and
consider that the finite field F16 consists of the polynomials ax3+bx2+cx+d ∈ F2[x]
modulo f(x). The elements of F16 are stored in 4 bits and then the addition of two
elements in F16 is equal to the bitwise XOR of them. For simplicity, we convert the
binary elements of F16 to decimal numbers. In particular, an element ax3+bx2+cx+d
of F16 is converted to an integer 23a + 22b + 2c + d. For multiplications of F16, we
fix a generator 2 of the multiplicative group F×

16 and create a list

F× := {2i | 0 ≤ i ≤ 15} = {1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9}.

Then we create a multiplication table mt of F16 as follows

mt(F×[i], 0) = mt(0,F×[i]) := 0 for 1 ≤ i ≤ 15 and

mt(F×[i],F×[j]) := F×[i+ j (mod 15)] for 1 ≤ i, j ≤ 15.

The matrix S. When we fix the finite field F16 := F2[x]/ < x4 + x+1 > and with
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the same notation as above, we fix the matrices S as follows:

S =

[
8 7
7 6

]
if l = 2,

S =

8 7 6
7 6 5
6 5 4

 if l = 3,

S =


8 7 6 5
7 6 5 4
6 5 4 3
5 4 3 2

 if l = 4.

S =


8 7 6 5 4
7 6 5 4 3
6 5 4 3 2
5 4 3 2 1
4 3 2 1 9

 if l = 5.

One can check that the characteristic polynomials of these matrices S are irreducible
over F16.

Generate elements of F16[S]. Recall that the field F16[S] of R is defined to be

F16[S] = {a0 + a1S + · · ·+ al−1S
l−1 | a0, a1, · · · , al−1 ∈ F16}

and the entries of the matrix T 12 are nonzero matrices randomly chosen from F16[S].
In order to generate nonzero matrices from F16[S], we modify the leading coefficient
al−1 if al−1 = 0. Given inputs l elements a0, . . . , al−1 of F16. If al−1 = 0, then we
modify the leading coefficient al−1 := 16 − a0 when a0 ̸= 0 and al−1 := 15 when
a0 = 0. Note that 16 − a0 is the difference between two integers, and it is not
compatible with the difference between elements of F16.

Algorithm 1: Generate elements of F16[S]

input : l elements a0, . . . , al−1 of F16

output: a nonzero element of F16[S]
1 if al−1 = 0 then
2 if a0 ̸= 0 then
3 al−1 ← 16− a0
4 else
5 if a0 = 0 then
6 al−1 ← 15
7 end

8 end

9 end
10 return a0 + a1S + · · ·+ al−1S

l−1

Generate invertible matrices. Let l = 2, 3, 4, 5 and M ∈ Matl×l(F16) any l × l
matrix over F16. Since the polynomial det(M + xS) in the variable x has at most
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l roots, there exists an element a of F16 such that the matrix M + aS is invertible.
We use this property to generate invertible matrices as follows.

Algorithm 2: Generate invertible matrices

input : a l × l matrix M
output: an invertible matrix M

1 if det(M) = 0 then
2 for a from 1 to 15 do
3 if det(M + aS) ̸= 0 then
4 M ←M + aS
5 break

6 end

7 end

8 end
9 return M

1.9 Algorithms

1.9.1 Algorithms for Key Generation

For convenience, we always start the index with zero in our algorithms. The key
generation process with key-randomness alignment technique is as follows.

First Step: Fix an l× l symmetric matrix S as in Sec. 1.8. Generate [T ] from private
seed sprivate. Generate P 11

i , P 12
i and P 21

i for 0 ≤ i < m from public seed spublic.
We also generate the matrices Ai,α, Bi,α, Qi,α,1 and Qi,α,2 for 0 ≤ α < l2 + l, and
P 11
i , P 12

i and P 21
i for 0 ≤ i < m from spublic.

Algorithm 3: Generate the linear map T

input : SNOVA parameters (v, o, l)
private seed sprivate

output: the matrix [T 12]
1 (coefficients of S-polynomials for entries in T 12)← HashSHAKE256(sprivate)

▷ HashSHAKE256 is instantiated as SHAKE256 throughout
2 Generate entries of T 12 using Algorithm 1
3 return [T 12]
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Algorithm 4: SNOVA SHAKE public key expansion

input : Seed M
The requested number of bytes N

output: Pseudo-random bytes

1 x← 00 ▷ x is set to the empty string
2 b← 0
3 n← 0
4 while n < N do
5 d← min(168, N − n)
6 x← x ∥ SHAKE128(M ∥ b64, d)
7 n← n+ d
8 b← b+ 1

9 end
10 return x

Algorithm 5: Generate the random part of public key

input : SNOVA parameters (v, o, l)
public seed spublic

output: the matrices (Ai,α, Bi,α, Qi,α,1 and Qi,α,2 for 0 ≤ α < l2 + l)
the matrices (P 11

i , P 12
i , P 21

i for 0 ≤ i < m)
1 if l ≤ 3 then

2
(entries of (P 11

0 || · · · ||P 11
m−1)||(P 12

0 || · · · ||P 12
m−1)||(P 21

0 || · · · ||P 21
m−1))

← HashAES128(spublic)

3 sfixed ← ”SNOVA ABQ”

4

(entries of (A0|| · · · ||Al2+l−1)||(B0|| · · · ||Bl2+l−1))||
(coefficients of S-polynomials for entries in the concatenation

(Q0,1|| · · · ||Q(l2+l−1),1)||(Q0,2|| · · · ||Q(l2+l−1),2))

← SHAKE256(sfixed)

5 else

6

(entries of (P 11
0 || · · · ||P 11

m−1)||(P 12
0 || · · · ||P 12

m−1)||(P 21
0 || · · · ||P 21

m−1))||
(entries of (A0|| · · · ||Al2+l−1)||(B0|| · · · ||Bl2+l−1))||
(coefficients of S-polynomials for entries in the concatenation

(Q0,1|| · · · ||Q(l2+l−1),1)||(Q0,2|| · · · ||Q(l2+l−1),2))

← HashAES128(spublic)

7 end
8 ▷ HashAES128 is instantiated as AES128 throughout
9 ▷ HashSNOVA SHAKE (Algorithm 4) is an alternative to HashAES128

10 for α from 0 to l2 + l − 1 do
11 let Ai,α, Bi,α, Qi,α,1 and Qi,α,2 be invertible using Algorithm 2
12 end
13 return (Ai,α, Bi,α, Qi,α,1 and Qi,α,2 for 0 ≤ α < l2 + l) and (P 11

i , P 12
i , P 21

i

for 0 ≤ i < m)
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Second Step: Compute the matrix F 11
i , F 12

i , F 21
i , P 22

i for 0 ≤ i < m as below.

For 0 ≤ i < m, we have
[Fi] =

[
T−1

]t
[Pi]

[
T−1

]
.

Note that [T−1] = [T ]−1 = [T ] since F16 is of the characteristic 2. Therefore, the
following equations hold

F 11
i = P 11

i

F 12
i = P 11

i T 12 + P 12
i

F 21
i = (T 12)tP 11

i + P 21
i

0 = F 22
i = (T 12)t ·

(
P 11
i T 12 + P 12

i

)
+ P 21

i T 12 + P 22
i .

In other words, we then have

P 22
i =

(
T 12
)t · (P 11

i T 12 + P 12
i

)
+ P 21

i T 12.

The public key expansion algorithm is given in Algorithm 5. Beullens has shown
in [11] that some public keys of the Round 1 version of SNOVA are weak. We found
that this applies even when including the Round 2 tweaks if l ≤ 3 albeit in a much
weaker way. Refer to Section 5.2.3 for more information. At l = 2, we estimate that
the probability of arriving at a ”weak” key with ABQ matrices derived from the
public key is less than 2−48, which we believe is still unacceptable. As an additional
measure, we fix the seed used to generate the ABQ matrices to some arbitrary
but ”well-chosen” value if l ≤ 3. We use the ASCII string ”SNOVA ABQ” and
SHAKE256 for the generation of the ABQ matrices if l ≤ 3. We have verified that
this fixed seed for l = 2, 3 results in a set of ABQ matrices that has a MinRank of
l2o− l + 1 (see Section 5.2.3).

Algorithm 6: Generate Public key

input : SNOVA parameters (v, o, l)
public and private seeds (spublic, sprivate)

output: public key (spublic, P
22
i )

1 Generate T 12 using Algorithm 3
2 m← o
3 Generate (P 11

i , P 12
i , P 21

i for 0 ≤ i < m) using Algorithm 5
4 for i from 0 to m− 1 do

5 P 22
i ← (T 12)

t · (P 11
i T 12 + P 12

i ) + P 21
i T 12

6 end
7 return (spublic, P

22
i for 0 ≤ i < m)
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Algorithm 7: Generate private key

input : SNOVA parameters (v, o, l)
public and private seeds (spublic, sprivate)

output: private key (T 12, F 11
i , F 12

i , F 21
i for 0 ≤ i < m)

1 Generate T 12 using Algorithm 3
2 m← o
3 Generate (P 11

i , P 12
i , P 21

i for 0 ≤ i < m) using Algorithm 5
4 for i from 0 to m− 1 do
5 F 11

i ← P 11
i

6 F 12
i ← P 11

i T 12 + P 12
i

7 F 21
i ← (T 12)tP 11

i + P 21
i

8 end
9 return (T 12, F 11

i , F 12
i , F 21

i for 0 ≤ i < m)

1.9.2 Algorithms for Signature Generation

Let D be the document to be signed, we randomly choose a salt and then generate a
signature for the hash value Y = Hash(spublic||Hash(D)||salt) where spublic is the
public seed of SNOVA scheme. First, we randomly assign values to vinegar variables
X0, · · · , Xv−1 depending on the number of signs numsig as follows

Algorithm 8: Assign values to vinegar variables

input : SNOVA parameters (v, o, l)
digest of the document digest = Hash(D)
the number of sign numsig

salt
output: vinegar values (X0, . . . , Xv−1)

1 (X0, . . . , Xv−1)← Hash(sprivate||digest||salt||numsig)
2 return (X0, . . . , Xv−1)

Second, we compute the vinegar part values F̃i,V V of the central map F̃i for 0 ≤ i <

m. Recall that the vinegar part values F̃i,V V of the central map F̃i is

F̃i,V V =
l2+l−1∑
α=0

Ai,α ·

(
v−1∑
j=0

v−1∑
k=0

X t
j (Qi,α,1Fi′,jkQi,α,2)Xk

)
·Bi,α

where Fi′,jk’s are elements randomly chosen from R, Ai,α and Bi,α are invertible
matrices randomly chosen fromR, andQi,α,1, Qi,α,2 are invertible matrices randomly

chosen from Fq[S]. Note that we write the central map F̃i in the form of

[Fi] =

[
F 11
i F 12

i

F 21
i 0

]
,
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and we also write
F 11
i [j][k] = Fi,jk for 0 ≤ j, k < v.

We can now compute the vinegar part values F̃i,V V of the central map F̃i by the
following algorithm.

Algorithm 9: Compute the vinegar part of the central map

input : SNOVA parameters (v, o, l)
private key (F 11

i for 0 ≤ i < m)
public key (Ai,α, Bi,α, Qi,α,1, Qi,α,2 for 0 ≤ α < l2 + l)
vinegar values (X0, . . . , Xv−1)

output: the vinegar part (F̃i,V V for 0 ≤ i < m)
1 m← o
2 for i from 0 to m− 1 do

3 F̃i,V V ← 0
4 end
5 for α from 0 to l2 + l − 1 do
6 for i from 0 to m− 1 do
7 i′ ← (i+ α) mod m
8 for j for 0 to v − 1 do
9 Lefti,α[j]← Ai,α ∗X t

j ∗Qi,α,1 ▷ the left term of F 11
i [j][k]

10 Righti,α[j]← Qi,α,2 ∗Xj ∗Bi,α ▷ the right term of F 11
i [j][k]

11 end
12 for j from 0 to v − 1 do
13 for k from 0 to v − 1 do

14 F̃i,V V ← F̃i,V V + Lefti,α[j] ∗ F 11
i′ [j][k] ∗Righti,α[k]

15 end

16 end

17 end

18 end

19 return (F̃i,V V for 0 ≤ i < m)

The resulting system can be seen as a linear system of the oil variables over the
finite field Fq. In order to write down this linear system, we need to define the
vectorization of a matrix. For M = (mij)l×l ∈ R with mij ∈ Fq, the vectorization
of the matrix M is defined by

# –

M =
(
m00,m01, · · · ,m0(l−1),m11,m12, · · · ,m1(l−1), · · · ,m(l−1)(l−1)

)t ∈ Fl2

q .

For convenience, we also write M [i][j] instead of mij. Let L = (ltitj)0≤ti,tj<l and
R = (rtitj)0≤ti,tj<l ∈ R. Let X = (xtitj)0≤ti,tj<l be a l× l matrix with variables xtitj .
Write

#         –

LXR = M
#–

X,

where M =
(
mtitj

)
0≤ti,tj<l2

∈ Matl2×l2 (Fq). We find nice formulas between matrices
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L,R and the matrix M . For example, l = 2, one has

#         –

LXR =


r00l00x00 + r10l00x01 + r00l01x10 + r10l01x11

r01l00x00 + r11l00x01 + r01l01x10 + r11l01x11

r00l10x00 + r10l10x01 + r00l11x10 + r10l11x11

r01l10x00 + r11l10x01 + r01l11x10 + r11l11x11

 ,

and then

M =


r00l00 r10l00 r00l01 r10l01
r01l00 r11l00 r01l01 r11l01
r00l10 r10l10 r00l11 r10l11
r01l10 r11l10 r01l11 r11l11

 .

For l = 2, one has

M [ti][tj] = L[ti/l][tj/l]R[tj%l][ti%l] for 0 ≤ ti, tj < l2, (1.1)

where t/l and t%l denote the quotient and the remainder of the division of t by l.
In fact, the equation (1.1) holds for all l. Similarly, if we write

#           –

LX tR = M
#–

X,

then one can compute directly that

M [ti][tj] = L[ti/l][tj%l]R[tj/l][ti%l] for 0 ≤ ti, tj < l2. (1.2)

Recall that the central map F̃i including the oil variable Xk is of the form

l2+l−1∑
α=0

Ai,α ·

(
v−1∑
j=0

X t
j (Qi,α,1Fi′,jkQi,α,2)Xk

)
·Bi,α

+
l2+l−1∑
α=0

Ai,α ·

(
v−1∑
j=0

X t
k (Qi,α,1Fi′,kjQi,α,2)Xj

)
·Bi,α (1.3)

We now use the equations (1.1), (1.2) to find the coefficient matrix Mik of the

variables
#  –

Xk in the central map F̃i as follows.
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Algorithm 10: Compute the coefficient matrix of the oil variable

input : SNOVA parameters (v, o, l)
private key (F 12

i , F 21
i ) for some 0 ≤ i < v

public key (Ai,α, Bi,α, Qi,α,1, Qi,α,2 for 0 ≤ α < l2 + l)
vinegar values (X0, . . . , Xv−1)
k, the index of oil variables where 0 ≤ k < o

output: the coefficient matrix Mik

1 for i from 0 to m− 1 do
2 for α from 0 to l2 + l − 1 do
3 for j for 0 to v − 1 do
4 Lefti,α[j]← Ai,α ∗X t

j ∗Qi,α,1 ▷ the left term of Fi,jk

5 Righti,α[j]← Qi,α,2 ∗Xj ∗Bi,α ▷ the right term of Fi,jk

6 end

7 end

8 end
9 for ti from 0 to l2 + l − 1 do

10 for tj from 0 to l2 + l − 1 do
11 Mik[ti][tj]← 0
12 end

13 end
14 for i from 0 to m− 1 do
15 for α from 0 to l2 + l − 1 do
16 i′ ← (i+ α) mod m
17 for j for 0 to v − 1 do
18 LeftXk

← Lefti,α[j] ∗ F 12
i′ [j][k] ∗Qi,α,2 ▷ the left term of Xk

19 RightXk
← Bi,α ▷ the right term of Xk

20 for ti from 0 to l2 + l − 1 do
21 for tj from 0 to l2 + l − 1 do
22 Mik[ti][tj]←

Mik[ti][tj] + LeftXk
[ti/l][tj/l] ∗RightXk

[tj%l][ti%l]

23 end

24 end

25 end
26 for j for 0 to v − 1 do
27 LeftXk

← Ai,α ▷ the left term of X t
k

28 RightXk
← Qi,α,1 ∗ F 21

i′ [k][j] ∗Righti,α[j] ▷ the right term of X t
k

29 for ti from 0 to l2 + l − 1 do
30 for tj from 0 to l2 + l − 1 do
31 Mik[ti][tj]←

Mik[ti][tj] + LeftXk
[ti/l][tj%l] ∗RightXk

[tj/l][ti%l]

32 end

33 end

34 end

35 end

36 end
37 return Mik
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We are now ready to write down the linear system of the oil variables over the finite
field Fq. We put the coefficient matrices Mik and the vinegar part values F̃i,V V of
the central map into the augmented matrix G of the system as follows.

Algorithm 11: Build the augmented matrix of the system

input : SNOVA parameters (v, o, l)
the vinegar part values (Fi,V V for 0 ≤ i < v)
the coefficient matrices (Mik for 0 ≤ i < v and 0 ≤ k < o)
digest of the document digest = Hash(D)
length of the digest |digest|
public seed spublic
salt

output: the augmented matrix G
1 m← o
2 (G[0][m ∗ l2], . . . , G[m ∗ l2 + l − 1][m ∗ l2])←

HashSHAKE256(spublic||digest||salt)
▷ Put the hash value in the last column of G

3 for i from 0 to m− 1 do
4 for j from 0 to l − 1 do
5 for k from 0 to l − 1 do
6 G[i ∗ l2 + j ∗ l+ k][m ∗ l2]← G[i ∗ l2 + j ∗ l+ k][m ∗ l2] +Fi,V V [j][k]
7 end

8 end

9 end
10 for i from 0 to m− 1 do
11 for k from 0 to m− 1 do
12 for ti from 0 to l2 + l − 1 do
13 for tj from 0 to l2 + l − 1 do
14 G[i ∗ l2 + ti][k ∗ l2 + tj]←Mik[ti][tj]
15 end

16 end

17 end

18 end
19 return G

In the signature algorithm, we will use Gaussian elimination to solve the linear
system G. For convenience, we define the function Gauss as follows. The func-
tion Gauss(G) returns a binary value flag redo ∈ {TRUE,FALSE} indicating
whether the sign procedure needs to sign again by assigning a different set of vinegar
values, and if not so Gauss(G) also returns the solution of the system.
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Algorithm 12: Signing

input : SNOVA parameters (v, o, l)
public and private seeds (spublic, sprivate)
digest of the document digest = Hash(D)
length of the digest |digest|
salt

output: the signature sig and salt
1 Generate Ai,α, Bi,α, Qi,α,1 and Qi,α,2 for 0 ≤ α < l2 + l) using Algorithm 5
2 m← o
3 Generate (T 12, F 11

i , F 12
i , F 21

i for 0 ≤ i < m) using Algorithm 7

4 [T ]←
[
I11 T 12

0 I22

]
5 numsig ← 0
6 repeat
7 numsig ← numsig + 1
8 Assign vinegar values (X0, . . . , Xv−1) using Algorithm 8
9 Compute (Fi,V V for 0 ≤ i < m) using Algorithm 9

10 Compute (Mik for 0 ≤ i < m, 0 ≤ k < o) using Algorithm 10
11 Build the augmented matrix G using Algorithm 11

12 flag redo, (X̃0, X̃1, . . . , X̃o−1)← Gauss(G)
13 if flag redo==FALSE then

14 sig← [T ](X0, . . . , Xv−1, X̃0, . . . , X̃o−1)
t ▷ Note that T−1 = T

15 end

16 until flag redo==FALSE;
17 return (sig, salt)

1.9.3 Algorithms for Signature Verification

Recall that the public key P̃ =
[
P̃0, · · · , P̃m−1

]
: Rn → Rm, where

P̃i(U) =
l2+l−1∑
α=0

n−1∑
dj=0

n−1∑
dk=0

Ai,α · U t
dj
(Qi,α,1Pi′,djdkQi,α,2)Udk ·Bi,α

with the variable U = (U0, . . . , Um−1)
t. For the signature verification, we write the

signature sig = (U0, . . . , Um−1)
t ∈ R and sig[i] = Ui for 0 ≤ i < m. The algorithm

for evaluating the public map at a signature sig is as follows.
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Algorithm 13: Evaluate the public map

input : SNOVA parameters (v, o, l)
public key (Ai,α, Bi,α, Qi,α,1, Qi,α,2 for 0 ≤ α < l2 + l)
public map (P 11

i′ , P
12
i′ , P

21
i′ , P

22
i′ for 0 ≤ i < m)

the signature sig
output: The evaluation hashs of P at sig

1 m← o
2 for α from 0 to m− 1 do
3 for j from 0 to n− 1 do

4 Lefti,α[j]← Ai,α ∗ (sig[j])t ∗Qi,α,1 ▷ the left term of Pi,djdk

5 Righti,α[j]← Qi,α,2 ∗ sig[j] ∗Bi,α ▷ the right term of Pi,djdk

6 end

7 end
8 for i from 0 to m− 1 do
9 i′ ← (i+ α) mod m

10 hashs[i]← 0
11 for α from 0 to l2 + l − 1 do
12 for dj from 0 to v − 1 do
13 for dk from 0 to v − 1 do
14 hashs[i] = hashs[i] + Lefti,α[dj] ∗ P 11

i′ [dj][dk] ∗Righti,α[dk]

15 end

16 end
17 for dj from 0 to v − 1 do
18 for dk from 0 to o− 1 do
19 hashs[i] = hashs[i] +Lefti,α[dj] ∗P 12

i′ [dj][dk] ∗Righti,α[v+ dk]

20 end

21 end
22 for dj from 0 to o− 1 do
23 for dk from 0 to v − 1 do
24 hashs[i] = hashs[i] +Lefti,α[v+ dj] ∗P 21

i′ [dj][dk] ∗Righti,α[dk]

25 end

26 end
27 for dj from 0 to o− 1 do
28 for dk from 0 to o− 1 do
29 hashs[i] = hashs[i]+Lefti,α[v+dj]∗P 22

i′ [dj][dk]∗Righti,α[v+dk]

30 end

31 end

32 end

33 end

34 hashs ← (hashs[0], . . . ,hashs[m− 1])t

35 return hashs
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Algorithm 14: Signature verification

input : SNOVA parameters (v, o, l)
public key (spublic, P

22
i′ for 0 ≤ i < m)

digest of the document digest = Hash(D)
length of the digest —digest—
salt

output: Accept or Reject
1 Generate Ai,α, Bi,α, Qi,α,1 and Qi,α,2 for 0 ≤ α < l2 + l using Algorithm 5
2 m← o
3 Generate (P 11

i′ , P
12
i′ , P

21
i′ for 0 ≤ i < m) using Algorithm 5

4 hashd ← HashSHAKE256(spublic||digest||salt)
5 Compute hashs using Algorithm 13
6 if hashs == hashd then
7 return Accept
8 else
9 return Reject

10 end

1.10 Parameters Settings

In this section, we propose our parameters aiming at three security levels in the new
call of NISTPQC project [44] levels I, III and V, respectively.

1.10.1 List of Our Parameters

The key-size and the length of the signature are shown as below. Herein, the notation
Sizepk denotes the public key size and Sizesig denotes the signature size. Note that

the 16 bytes salt is also included in the size of SNOVA signature (in order to attain
EUF-CMA) and the 16 bytes seed is included in the size of public key size.
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Table 6: Key-sizes and lengths of the signature of SNOVA parameter settings (in
bytes).

Security Level (v, o, q, l) Sizepk Sizesig Sizeesk/Sizessk

I
(37, 17, 16, 2) 9842 124 91440/48
(25, 8, 16, 3) 2320 164.5 39576/48
(24, 5, 16, 4) 1016 248 36848/48

III

(56, 25, 16, 2) 31266 178 300848/48
(49, 11, 16, 3) 6005.5 286 177060/48
(37, 8, 16, 4) 4112 376 133040/48
(24, 5, 16, 5) 1578.5 378.5 60048/48

V

(75, 33, 16, 2) 71890 232 704532/48
(66, 15, 16, 3) 15203.5 380.5 435423/48
(60, 10, 16, 4) 8016 576 395248/48
(29, 6, 16, 5) 2716 453.5 100398/48

Remark 1.1. During Round 1 evaluation, we discussed the MinRank problem in-
duced by ring UOV in our Round 1 supporting document. The decision regarding
the number of vinegar variables in our Round 1 parameter sets was primarily based
on the discussion of the MinRank of quadratic forms induced by ring UOV. In [34],
it is shown that the solutions of such MinRank problems are not useful to an at-
tacker. Therefore, we believe that there is room for adjustment and reduction in
the number of vinegar variables. The security analysis of a reduction of vinegar
variables in our parameter sets is not mature enough to submit these for Round 2.
We have therefore decided to stay with the existing parameters.

1.10.2 How the Performance is Affected by Parameters

The size of main term in public key is

m ·m2 · l2 · log2 q
8

.

We can see the size of public key is mainly related tom, the number of ring equations,
which is also the number of ring oil variables, the parameter o. For a fixed security
level, by increasing the parameter l, we can further reduce the value ofm. Therefore,
for larger l, we will have smaller public key size. On the other hand, a larger l will
make the signature size larger. It is a trade-off between small public key or small
signature. Also, for larger l, the key generation will be more efficient, but the signing
and verification will be less efficient, while still practical. We propose multiple
parameter sets that allow the selection of a range of possible size and performance
trade-offs. For the sake of security, we have chosen very conservative parameters.
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2 Performance Analysis (2.B.2)

2.1 Time

The official implementation of SNOVA [54] supports two optimization levels, an
optimized version that uses plain C and a version that uses AVX2 to vectorize the
matrix multiplications. Both of these optimized versions have been rewritten for
Round 2. The AVX2 version is considerably faster than the plain C optimized
version.

Table 7: Benchmark results on a modern desktop system (Arrow Lake) using AVX2
instructions. The performance is the median number of CPU cycles over 2048 bench-
mark runs.

SL (v, o, q, l) XOF KeyGen ESK Sign SSK Sign ESK Verify

I

(37, 17, 16, 2) AES 754,677 737,085 262,422 151,842
(37, 17, 16, 2) SHAKE 923,342 905,717 259,619 317,564
(25, 8, 16, 3) AES 246,298 494,904 340,740 176,153
(25, 8, 16, 3) SHAKE 317,078 563,468 346,892 244,364
(24, 5, 16, 4) AES 222,876 530,409 385,429 205,829
(24, 5, 16, 4) SHAKE 286,892 594,690 385,965 268,342

III

(56, 25, 16, 2) AES 3,289,256 2,876,627 648,245 531,159
(56, 25, 16, 2) SHAKE 3,829,031 3,424,697 651,370 1,079,757
(49, 11, 16, 3) AES 1,503,852 2,061,825 984,405 675,680
(49, 11, 16, 3) SHAKE 1,839,992 2,390,210 997,315 987,091
(37, 8, 16, 4) AES 1,039,795 1,804,955 1,102,301 652,463
(37, 8, 16, 4) SHAKE 1,263,702 2,030,093 1,100,166 889,065
(24, 5, 16, 5) AES 456,998 1,421,115 1,120,762 685,307
(24, 5, 16, 5) SHAKE 553,744 1,524,408 1,128,682 787,049

V

(75, 33, 16, 2) AES 9,745,037 8,052,855 1,426,465 1,309,034
(75, 33, 16, 2) SHAKE 11,034,489 9,328,179 1,450,322 2,595,930
(66, 15, 16, 3) AES 4,561,008 5,700,004 2,215,902 1,737,533
(66, 15, 16, 3) SHAKE 5,376,257 6,516,854 2,223,800 2,567,815
(60, 10, 16, 4) AES 3,519,404 5,574,943 2,800,653 1,932,041
(60, 10, 16, 4) SHAKE 4,244,420 6,216,789 2,819,456 2,648,472
(29, 6, 16, 5) AES 804,402 2,278,333 1,758,416 1,073,040
(29, 6, 16, 5) SHAKE 985,666 2,442,798 1,757,620 1,249,950

The benchmarks are for the official implementation of SNOVA [54] using AVX2
instructions. The performance is reported in CPU cycles. The number of cycles is
the median over 2048 benchmark runs. Test system: CPU Intel(R) Core(TM) Ultra
7 265K (Arrow Lake), Compiler: GCC 14.2.0, OS: Linux Mint 22, Turbo Boost:
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disabled.

2.2 Space

The key sizes are given by the following expressions:

Public key size. The reduced size of the public key of SNOVA using alignment is

Sizepk =
m ·m2 · l2 · log2 q

8
+ |spublic| =

m ·m2 · l2 · log2 q
8

+ 16

bytes.

Expanded private key size. The size of private key is

Sizeesk =
(m(n2 −m2)l2 + l2vo+ 4m(l2 + l)l2) · log2 q

8
+ |spublic|+ |sprivate|

=
(m(n2 −m2)l2 + l2vo+ 4m(l2 + l)l2) · log2 q

8
+ 48

bytes.

Seed-type private key size. The size of the compressed private key is

Sizessk = |spublic|+ |sprivate| = 16 + 32 = 48

bytes.

Signature size. The size of a signature of SNOVA scheme is

Sizesig =
n · l2 · log2 q

8
+ |salt| = n · l2 · log2 q

8
+ 16

bytes.
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3 Known Answer Test values (2.B.3 )

The submission includes Known Answer Tests (KAT) files of the SNOVA signature
scheme. We have provided scripts to generate the KAT files in the submission
package. The SNOVA KAT files can also be downloaded at https://github.com/
PQCLAB-SNOVA/SNOVA_KAT. This download link for our KAT files can be found in
the submission folder KAT.

https://github.com/PQCLAB-SNOVA/SNOVA_KAT
https://github.com/PQCLAB-SNOVA/SNOVA_KAT
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4 Expected Security Strength (2.B.4)

We give the expected security strength of our parameters aiming at three security
levels in the new call of the NIST PQC project [44] levels I, III, and V, respectively.

4.1 Security Strength

The complexity estimations of SNOVA parameter sets against the known attacks in
Section 5 are shown in the following tables. The lowest complexity among all known
attacks is marked in bold fonts.

Table 8: Complexity estimates of SNOVA parameter sets against forgery attacks in
log2(♯gates).

SL (v, o, q, l) Direct Collision MLC Forgery 1 Forgery 2

I
(37, 17, 16, 2) 165 168 158 188 167
(25, 8, 16, 3) 171 176 166 217 171
(24, 5, 16, 4) 184 192 182 219 180

III

(56, 25, 16, 2) 234 248 222 264 236
(49, 11, 16, 3) 226 244 220 249 228
(37, 8, 16, 4) 287 360 279 361 281
(24, 5, 16, 5) 281 348 273 435 ≈ 281∗

V

(75, 33, 16, 2) 302 376 287 344 303
(66, 15, 16, 3) 302 388 293 333 303
(60, 10, 16, 4) 350 488 343 392 347
(29, 6, 16, 5) 334 448 323 517 ≈ 334∗

In Table 8, “Direct”, “Collision”, “MLC”, “Forgery 1” and “Forgery 2” denote the
Direct attack with Hashimoto’s algorithm in Section 5.2.1, the Collision attack in
Section 5.2.2, the Memoryless Collision attack in Section 5.2.2, the Forgery attack
proposed by Beullens in Section 5.2.3 and Forgery attack proposed by Cabarcas et
al. in Section 5.2.4, respectively.

Our current methods do not enable us to provide an accurate estimate for the l = 5
parameter sets (indicated by a ∗ in Table 8). We can observe that the complexities of
the Direct attack and the Forgery 2 attack are quite close, with the largest difference
being only 6. Notably, in all our parameter sets, the ratio between the number of
vinegar variables and oil variables is consistent. Therefore, we heuristically expect
that for the parameter set with l = 5, the complexities of these two attacks will
not differ significantly. We expect that the l = 5 parameter sets satisfy the claimed
security levels with a wide margin.
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Table 9: Complexity estimates of SNOVA parameter sets against key recovery at-
tacks in log2(♯gates).The numbers with “∗” depend on the heuristic prediction, for
more details, we refer to Section 5.3.7.

SL (v, o, q, l) Rec. 1 Rec. 2 KS Int.

I
(37, 17, 16, 2) 203 195 165 153
(25, 8, 16, 3) 200 187 209 221
(24, 5, 16, 4) 269 249 309 353

III

(56, 25, 16, 2) 297 288 253 221
(49, 11, 16, 3) 438 424 461 529
(37, 8, 16, 4) 387 365 469 506
(24, 5, 16, 5) 281 257∗ 385 412

V

(75, 33, 16, 2) 389 379 341 288
(66, 15, 16, 3) 574 558 617 690
(60, 10, 16, 4) 695 673 805 922
(29, 6, 16, 5) 334 310∗ 465 494

In Table 9, “Rec. 1”, “Rec. 2”, “KS” and “Int.” denote the Reconciliation attack
in Section 5.3.1, the Reconciliation attack proposed by Cabarcas et al. in Section
5.3.7, the Kipnis-Shamir attack in Section 5.3.2 and Intersection attack in Section
5.3.3, respectively.

Table 10: Complexity estimates of SNOVA parameter sets against key recovery
attacks via lifting method in log2(♯gates).

SL (v, o, q, l) Lifting Rec. Lifting KS Lifting Int.

I
(37, 17, 16, 2) 196 167 157
(25, 8, 16, 3) 195 212 275
(24, 5, 16, 4) 319 313 510

III

(56, 25, 16, 2) 289 255 289
(49, 11, 16, 3) 510 464 510
(37, 8, 16, 4) 425 473 425
(24, 5, 16, 5) 320 389 623

V

(75, 33, 16, 2) 376 343 302
(66, 15, 16, 3) 655 620 918
(60, 10, 16, 4) 785 809 1319
(29, 6, 16, 5) 384 469 734

In Table 10, “Lifting Rec.”, “Lifting KS” and “Lifting Int.” denote the Lifting
Reconciliation attack in Section 5.3.4, the Lifting Kipnis-Shamir attack in Section
5.3.5 and Lifting Intersection attack in Section 5.3.6, respectively.



SNOVA 38

5 Analysis of Known Attacks (2.B.5)

The SNOVA scheme can be considered as both a UOV-like signature scheme over
the matrix ring R and a UOV over Fq. In the Round 1 of evaluation, several
attacks were proposed [34, 37, 11, 16, 41, 2]. These attacks are mainly based on
the structure of Fq[S] and the low rank possibility of public map under bilinear
formulation [65]. In this section, we will review these attacks and analyze their
impact following the current tweaks on SNOVA, as well as evaluate their complexity.
We hope that through a comprehensive analysis, the structure of SNOVA can be
better understood. At the same time, we demonstrate that with these Round 2
modifications, SNOVA not only maintains its performance but also becomes more
secure. We would like to emphasize that, with slight tweaks, SNOVA continues to
meet the security requirement of NIST when facing these attacks.

Forgery attacks. Finding the preimage of the public map for the hash value of a
message is what constitutes signature forgery.

In [34], a forgery attack targeting ring UOV has been proposed. However, as men-
tioned in the same paper, the public map of SNOVA and ring UOV are only weakly
connected as a result of the use of l2 copies with different Aα, Qα,1, Qα,2, and Bα in

F̃i of SNOVA. The forgery attack in [34] targeting the ring UOV can not be applied
to SNOVA.

In [11], Beullens proposed a forgery attack against SNOVA, pointing out that the
Round 1 SNOVA public map may have a low-rank issue. Beullens interprets the
public map of SNOVA with bilinear form formulation. Under this formulation, he
discovered that if the Aα, Bα, Qα,1, Qα,2 matrices in SNOVA are generated randomly
then the matrices Ej,k in the formulation may have a low-rank linear combination
and this gives a forgery attack. The attack shows that the matrix Ej,k ∈ Fml2×ml2

q

is block diagonal matrix with m identical blocks of size l2 × l2 on the diagonals.
Moreover, these Ej,k matrices are determined by the Aα, Bα, Qα,1, Qα,2 matrices. In
his paper, Beullens also mentioned that with some slight adjustments his attacks
can be prevented. We carefully analyzed his attack as well as the structure of Ej,k

in SNOVA. We found other adjustments that we believe to be better. Under the
Round 2 adjustments, Ej,k is no longer a block diagonal matrix and will become
more like a random matrix. We will also explain that, in this case, the occurrence
of low-rank cases will be highly unlikely.

In [16], the authors proposed a forgery attack based on a bilinear formulation. This
attack primarily leverages the structure of Fq[S] and the techniques of stable ide-
als.This forgery attack is similar to Beullens’ attack, as both require the SNOVA
public map to be low rank. In other words, if the SNOVA public map is not of low
rank, their attacks become inefficient. Both attacks rely on the low-rank property.
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We will demonstrate that, under the current Round 2 adjustments, it is highly
unlikely for the SNOVA public key map to be of low rank. With the adjustments
made for Round 2, SNOVA continues to meet NIST security requirements against
all known attacks. Finally, we will observe that our Round 2 tweaks do not increase
the sizes of the public keys or signatures.

Key recovery attacks. Note that the public keys of SNOVA are generated by the
congruence relation [Pi] = [T ]t [Fi] [T ]. Since [Pi] ∈ Matn×n(R) and Matn×n(R) ∼=
Matln×ln(Fq), for key recovery attacks, the security of SNOVA will be evaluated by
analyzing the complexity of such attacks against the (lv, lo, q)-UOV induced from
public key [Pi] , . . . , [Pm].

5.1 Preliminaries

In this section, we briefly describe the tools that we used to estimate the complexity
of solving a MQ problem.

Solving MQ problem. The complexity of solving M homogeneous quadratic
equations in N variables [17] can be estimated by

MQ(N,M, q) = 3 ·
(
N − 1 + dreg

dreg

)2

·
(
N + 1

2

)
(5.1)

field multiplications. The term dreg, degree of regularity of a semi-regular polynomial
system [6], equals the smallest positive integer d such that the coefficient of td term
in the series generated by

(1− t2)M

(1− t)N
(5.2)

is non-positive.

Hybrid approach. The hybrid approach [7] randomly guesses k variables before
solving the MQ system and the corresponding complexity is

MQHybrid(N,M, q) = qk ·MQ(N − k,M, q) (5.3)

field multiplications for the classical case and

qk/2 ·MQ(N − k,M, q) (5.4)

field multiplications when applying Grover’s algorithm [31] for the quantum case.

Methods for solving underdetermined MQ. On the other hand, several meth-
ods [59, 29, 32] have been proposed to solve underdetermined MQ more efficiently.
These methods can transform an underdetermined MQ(N, M, q) problem to an
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MQ(M−k−αk, M−αk, q) problem where the value of αk depends on the approach
utilized in each method. (Generally, the attack in [32] would be the sharpest among
[59, 29, 32].) Hence, the main term of complexity of solving MQ system under this
technique is given by

min
k

qk ·MQ(M − k − αk,M − αk, q) (5.5)

field multiplications in the classical case.

Recently, the algorithm in [32] has been revised. The updated algorithm has become
more efficient. The complexity estimation formula is

MQHashimoto(N,M, q) (5.6)

=(M − α− k + 1)MQHybrid(α, α, q) (5.7)

+ qk (MQHybrid(α− 1, α− 1, q) +MQHybrid(M − α− k,M − α, q)) . (5.8)

provided that N ≥ max{(α + 1)(M − k − α + 1, α(M − k)− (α− 1)2 + k} holds.

Algorithms for super-underdetermined MQ. Note that, [36, 19, 40, 18] in-
dicate that when the number of variables N is sufficiently larger than the number
of equations M in an MQ problem then we can solve this MQ in polynomial time.
Please refer to the table in [32] for more information. Note that these four algorithms
are not applicable to the parameter settings of SNOVA.

5.2 Forgery Attacks

5.2.1 Direct Attack with Hashimoto’s Algorithm

For a quadratic multivariate polynomial system P = [P1, · · · , Pm] consisting of m
equations in n variables over Fq and an intended y ∈ Fm

q , an attacker can directly
try to solve the solution u of the system P (u) = y algebraically with Gröbner
basis approaches, such as those in [25, 26, 20, 17, 66]. We can assign values to
n−m variables in the system P (u) = y = Hash(digest||salt) randomly and then
obtain an MQ system of m equations in n variables which can be solved with high
probability. Once the system is solved, the solution u will be a valid fake signature
that satisfies P (u) = y.

In the case of SNOVA, to produce a fake signature, an attacker needs to regard a
(v, o, q, l) SNOVA public map as an (l2v, l2o, q) UOV public map over Fq and then
forge a signature for this UOV. Since each equation over R = Matl×l(Fq) yields l

2

equations over Fq, the system over ring R, P (U) = Y, with m equations and n
ring variables will result in an MQ system consisting of l2m equations in l2n field
variables.
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The complexity of classical direct attack is given by the estimation in [32]

CompDirect = MQHashimoto(l
2n, l2m, q) · (2 · (log2 q)2 + log2 q) (5.9)

gates.

5.2.2 Collision Attack

To forge a fake signature, an attacker can also try to checkM intended signaturesUj

where j = 1, · · · ,M , and N hash values Hash(digest||saltk) where k = 1, · · · , N ,
whether there exists a collision P (Uj) = Hash(digest||saltk). And if it does, then
the attacker has a valid fake signature. Thus, M signature computations and N
hash value computations are involved. Therefore, according to the estimation of
[14], the cost of such a collision attack would be

M · (l2m) ·
(
2(log2 q)

2 + 3 · log2 q
)
+N · 217 (5.10)

gates in the sense that regarding SNOVA as a UOV scheme over Fq. A collision is to
be expected when MN ≈ ql

2m. In a straightforward optimization of equation 5.10,
the optimal value occurs when N ≈ ql

2m/2 (note that at optimal values M > N).
At SL III this optimal value of N requires a storage capacity of the order of 2192

bits which is more than the number of atoms in the Earth (≈ 2167). Limiting M to
the number of atoms in the Earth gives a cost of

CompCollision =
ql

2m

2167
· 217. (5.11)

This is an unavoidable lower bound for the complexity of the collision attack when
ql

2m/2 > 2167, as is the case for all parameters at SL III and SL V.

Memory-Time tradeoff. In the call for proposals [44], NIST has indicated that
a metric to consider is the cost of accessing extremely large amounts of memory.
For the collision attack a more basic aspect has to be taken into account: the
cost of actually obtaining the amount of storage needed by the attack. For the
proposed SNOVA parameters, the lowest value of l2m is for (37, 17, 16, 2) where
l2m log2(q) = 272. In this case the optimal value for equation 5.10 is attained when
M ≈ 2138 and N ≈ 2134. These are not the cost-optimal values however. Suppose
that the collision attack runs at 1GHz and has a runtime of about a year. As there
are about 3 · 1016 cycles in a year, the cost of a N ≈ 2134 bits of storage has to be
comparable to the cost of 296 computational units for the given values of N and M
to be cost-optimal. This is not realistic. For our estimate of the collision attack we
have assumed a runtime of a year and we have assumed that the cost of a single
bit of (persistent) storage is cheaper than a single logic gate by a factor of 106.
When this cost factor is taken into account, the cost estimate of the collision attack
becomes

CompCollision = ql
2m/2 · 2

(
(l2m)

(
2(log2 q)

2 + 3 · log2 q
)
· 217 · 235

)1/2
, (5.12)
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gates. Equation 5.12 can only apply when ql
2m/2 < 2167 as explained above.

Taking into account the cost of memory makes the traditional collision attack less
economical than the memoryless collision attack described below. This conclusion
is largely independent of the specifics of the assumptions. Changing the runtime
to a weekend and changing the relative cost of a storage bit versus one unit of
computation to a very unrealistic value of 109 does not affect the outcome: The
memoryless collision attack is more economical than a traditional collision attack.

For SNOVA SL I we have presented the numbers taking into account the estimated
cost of storage, equation 5.12. At SL III and SL V we have used equation 5.11.
Note that all SNOVA schemes satisfy the required complexities even if the cost of
obtaining and accessing the memory is ignored.

Memoryless Collision Attack. The collision attack comes with a huge memory
requirement. Memoryless collision-finding algorithm are considered to be more re-
alistic than a traditional collision attack. As far as we know, for SNOVA the attack
of Nikolic and Sasaki [42] is the most efficient memoryless collision attack currently
available. This algorithm operates by producing a large number nv of values vi by
iterative application of the public map vi = P̃ (vi−1) and doing the same for a large
number nw of iterations on the hash function, wi = H(wi−1). The iterations over vi
and wi will have a collision with high probability when nvnw > ql

2m. For a complete
description, we refer to [42].

Let NP and NH = 217 denote the complexities of calculating the public map and
the hash (SHAKE256) respectively. The complexity of the algorithm of Nikolic and
Sasaki [42] at time-optimal parameters is

CompMLC = ql
2m/2 · 2 (NPNH)

1/2 . (5.13)

The algorithm of Nikolic and Sasaki [42] has a small overhead that amounts to an
additional factor between 1 and 2 in equation 5.13. We have ignored this overhead
in our estimates. The number of hashes to be stored is

max(NP , NH)

min(NP , NH)
,

which we have also ignored as well as it is small. The Gray-code enumeration
optimization [14] underlying the cost estimate 5.12 is very efficient for related inputs.
It is not an efficient algorithm to produce the iterated values vi, a direct evaluation
of the public map P̃ (vi−1) is faster. Evaluating P̃ (vi−1) for arbitrary vi−1 has a
complexity of slightly more than

NP = mn2l3(l2 + l)(2 log2(q)
2 + log2(q)).

The vinegar variables can be set to some fixed value in the iteration. This reduces
the complexity of the evaluation of P̃ (vi−1) by a factor n/m.
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5.2.3 Forgery Attack Proposed by Beullens

We first describe the Beullens forgery attack against Round 1 SNOVA public map.
SNOVA public map is a multivariate quadratic map characterized with l × l ma-
trix ring R = Matl×l(Fq) and a symmetric matrix S with irreducible characteristic
polynomial. Beullens attack utilizes the low-rank possibility of SNOVA public map
under the bilinear formulation. In the following, we adapt the notation in [11].

Bilinear formulation of Round 1 SNOVA public map. For a matrix A and a
positive integer n, A⊗n denotes the block diagonal matrix with n copies of A on the

block diagonal. For Round 1 SNOVA public map, P̃ (U) =
(
P̃1(U), . . . , P̃m(U)

)
:

Rn → Rm, it can be expressed as, for i ∈ {1, 2, . . . ,m},

P̃i(U) =
l2−1∑
α=0

n∑
j=1

n∑
k=1

Aα · U t
j (Qα,1Pi,jkQα,2)Uk ·Bα (5.14)

=
l2−1∑
α=0

Aα ·Ut ·Q⊗n
α,1 · [Pi] ·Q⊗n

α,2 ·U ·Bα (5.15)

where [Pi] are the public keys of SNOVA, Q
⊗n
α,1 is a n×n diagonal matrix overR with

identical blocks Qα,1 and similarly for Q⊗n
α,2. Here, the vector U = (U1, · · · , Un)

t ∈
Rn is a matrix of height nl and width l when we regard it as over Fq.

Let B : Fl2n
q × Fl2n

q → Fl2m
q be the bilinear map defined as

Bi,a,b(u,v) := B(a,b)
i (u,v). (5.16)

where, for (a, b) ∈ {0, . . . , ℓ− 1}2,

B
(a,b)
i : Fnℓ

q × Fnℓ
q → Fq, B

(a,b)
i (u,v) := ut (Sa)⊗n [Pi]

(
Sb
)⊗n

v. (5.17)

where uj is the (j + 1)-th column of U for j ∈ {0, . . . , l − 1}.

In [11, 65], it can be seen that

P̃ (U) =
l−1∑
j=0

l−1∑
k=0

Ej,k · B(uj,uk). (5.18)

Note that for each Pi(U) in Round 1 SNOVA public map, only one public key
[Pi] is used and Aα, Bα, Qα,1 and Qα,2 are shared by all equation. Therefore, the
matrix Ej,k in the bilinear formulation of P (U) is a block diagonal matrix with

identical blocks, i.e., Ej,k = Ẽ⊗m
j,k , Ẽj,k is an l2 × l2 matrix determined by matrices

Aα, Bα, Qα,1, Qα,2.

We then briefly describe the attack by Beullens. For other details, we refer to [11].
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Attack. This attack attempts to forge a signature by solving for U satisfy that the
columns uj = aju0 + vj where vj ∈ Fln

q is randomly chosen for all j ∈ {1, . . . , l− 1},
for some a1, . . . , al−1 ∈ Fq. Under the formulation (5.18), this implies that the
quadratic part of public map P (U) is Eα · B(u1,u1) where

Eα =
l−1∑
j=0

l−1∑
k=0

ajakEjk. (5.19)

The attack is divided into three steps:

- Since for the Round 1 Ej,k = Ẽ⊗m
j,k , the linear combination Eα is also a block

diagonal matrix of size l2m × l2m with identical l2 × l2 blocks on diagonal.
Therefore, if the linear combination of matrices Ẽjk has rank defect d then the
corresponding linear combination Eα will have rank defect md. This gives a
generalized MinRank problem.

- Following with the first step, if d = l2 − r then we have rank(Eα) = mr.
Therefore, for an attacker who wants to forge a fake signature, the remaining
is to solving an MQ system of mr equations in nl −m(l2 − r) variables.

- Using the structure of Fq[S], the generalized MinRank problem in the first step
can be extended to a generalized MinRank problem with l(l−1) variables that
tries to find the low rank of ER which is the quadratic part of P (U) under the
setting that uj = R⊗n

j u0+vj where Rj ∈ Fq[S] for all j ∈ {1, . . . , l− 1}. This
will allow the attackers to find matrices with lower rank. Hence, the number
of variables in step 2 can be further reduced. Then, the attack becomes more
efficient. Let uj = R⊗n

j u0 + vj and uk = R⊗n
k u0 + vk as defined in Beullens

paper. Write Rj =
∑l−1

a′=0 c
(j)
a′ S

a′ and Rk =
∑l−1

b′=0 c
(k)
b′ S

b′ . Therefore, the
quadratic part in ER attack is∑

jk

EjkB(R⊗n
j u0, R

⊗n
k u0) =

∑
jk

∑
a′b′

c
(j)
a′ c

(k)
b′ EjkB((Sa′)⊗nu0, (S

b′)⊗nu0)

And according to our understanding of Beullens paper,

B((Sa′)⊗nu0, (S
b′)⊗nu0) = E′

a′,b′B(u0,u0)

where E′
a′,b′ is the (linear transformation) matrix cooresping to the linear re-

lation between two bilinear map B((Sa′)⊗nu0, (S
b′)⊗nu0) and B(u0,u0). Same

resoning can be found in Beullens paper [11]. Hence, the quadraic part above
can be write as ∑

jk

∑
a′b′

c
(j)
a′ c

(k)
b′ Ejka′b′B(u0,u0).

where Ejka′b′ = EjkE
′
a′,b′ Under our modeling and notation,

ER =
∑
jk

∑
a′b′

c
(j)
a′ c

(k)
b′ Ejka′b′
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which is a block diagonal matrix whose entries are quadratic functions of the
coefficients of R1, . . . , Rl−1 (this coincides with Beullens paper). Note that the
matrix E′

a′,b′ is block diagonal matrix and so Ejk in the Round 1 setting of
SNOVA. Thus, ER is a block diagonal matrix with identical blocks in Beullens
attack.

The forgery attack of Beullens is determined by mr = rank(ER) and the complexity
is the cost of solving the MQ system of mr equations in nl −m(l2 − r) variables.
This MQ system can be very underdetermined if the rank defect d at step 1 becomes
larger, or equivalently, the rank defect of ER = Ẽ⊗m

R becomes lager where ẼR is
an l2 × l2 matrix induced by Aα, Bα, Qα,1, Qα,2 in SNOVA. We can observe that
Beullens’s attack is based on the rank defect of the matrix ER.

Analysis of the attack against Round 2 SNOVA public map. Similarly, the

Round 2 SNOVA public map, P̃ (U) =
(
P̃1(U), . . . , P̃m(U)

)
: Rn → Rm can be

expressed as, for i ∈ {1, 2, . . . ,m},

P̃i(U) =
l2+l−1∑
α=0

n∑
j=1

n∑
k=1

Ai,α · U t
j (Qi,α,1Pi′,jkQi,α,2)Uk ·Bi,α (5.20)

=
l2+l−1∑
α=0

Ai,α ·Ut ·Q⊗n
i,α,1 · [Pi′ ] ·Q⊗n

i,α,2 ·U ·Bi,α (5.21)

where i′ = i+ α mod m.

In Beullens’ original attack against Round 1 SNOVA public map, the main reason
that the rank of ER decreases significantly is that ER is a block diagonal matrix
with identical diagonal blocks. However, for Round 2 SNOVA public map, we can
observe that, for Pi(U), multiple public key [Pi′ ], (α = 0, . . . , l2 + l − 1) are used.
Furthermore, each equation no longer shares the same A,B,Q matrices. Therefore,
the matrix ER is no longer a block diagonal matrix with identical diagonal blocks.
ER becomes more like a random matrix. Following the estimation of Beullens, the
complexity of SNOVA against Beullens attack is given by solving the MQ system of
R = rank(ER) equations in ln− l2m+R variables.

The minimal rank of ER, R. In the cases of l = 2, 3, Beullens performed an
exhaustive search for the minimal rank of ER. Our approach is similar: for Round
2 SNOVA with l = 2, 3, the computations are feasible. For all parameter sets with
l = 2, 3, we fixed a specific set of ABQ matrices and used completely search to check
the corresponding minimal rank of ER, thus avoiding the weak key issue. For the
case of l = 4, the complete search is not feasible. For our l = 4 parameter sets,
we generated the ABQ matrices randomly. Based on heuristic analysis inspired by
Beullens [11], we believe that when l = 4, ER behaves very similarly to a random
matrix. The expected minimal rank in this case is l2o−l+1. Under these conditions,
SNOVA is resistant to Beullens’ attack and does not suffer from the weak key issue.
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For a l2o×l2o randommatrix, it has a rank≤ l2o−d with probability q−d2 . Therefore,
we expect the minimal achievable rank to typically be l2o− l+ 1. According to the
heuristic, we expect the probability that a matrix of rank l2o− d or lower exists to
be roughly

1−
(
1− q−d2

)ql(l−1)

.

Note that for d ≥ l this is well approximated by 2−4(d2−l2+l). For l = 4, 5, the
probability that a matrix with rank defect d = 7 exists to be ≤ 2−148. Note that, in
the case of d = 7, all our l = 4, 5 parameter sets still meet the security requirements.
For more details, we refer to Table 13. Therefore, we conclude that the probability
of l = 4, 5 weak key is negligible in practice. We summarize the information in the
following table.

Table 11: Minimal rank of ER of Round 2 SNOVA. The numbers with “∗” depend
on the heuristic prediction. The numbers without “∗” were determined by complete
search.

SL (v, o, q, l) ABQ matrices minimal rank of ER

I
(37, 17, 16, 2) fixed by a seed l2o− l + 1
(25, 8, 16, 3) fixed by a seed l2o− l + 1
(24, 5, 16, 4) randomly generated l2o− l + 1∗

III

(56, 25, 16, 2) fixed by a seed l2o− l + 1
(49, 11, 16, 3) fixed by a seed l2o− l + 1
(37, 8, 16, 4) randomly generated l2o− l + 1∗

(24, 5, 16, 5) randomly generated l2o− l + 1∗

V

(75, 33, 16, 2) fixed by a seed l2o− l + 1
(66, 15, 16, 3) fixed by a seed l2o− l + 1
(60, 10, 16, 4) randomly generated l2o− l + 1∗

(29, 6, 16, 5) randomly generated l2o− l + 1∗

In Table 12, we demonstrated the impact of different values for the number of terms
in the summation over α. Let nα denotes the number of terms in the summation
over α. We observed that when nα = l2 + l, the MinRank distribution converges to
the expected minimal rank. This explains why we increased the number of terms in
the summation over α to l2 + l. In this case, the MinRank distribution aligns with
the completely random case.

For l = 2 the number of ABQ seeds was 1000, for l = 3, o = 8 the number of
seeds was 100 and for l = 3, o = 15 the number of seeds was 10. The remaining
parameters sets with l ≤ 3 give very similar results. Based on these results as well
as the underlying rank distribution we have selected nα = l2 + l for SNOVA Round
2.

Remark 5.1. For l = 2, 3, we fixed the seed to a well-chosen value results in a
MinRank(ER) = l2o− l + 1, as shown in Table 11. For higher l, we have not found
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any seed that yields a lower MinRank. This was to be expected as the probability
of finding a seed with rank drop d = 3 when l = 3 is about 2−12 (see above).

Table 12: Distribution of the rank drop d depending on the number of terms nα in
the sum over α. The rank drop d = l2o −MinRank(ER) is the difference between
the maximum value of the MinRank of ER, which is l2o, and the actual MinRank.

(37, 17, 16, 2) (75, 33, 16, 2)

d nα = 4 nα = 5 nα = 6 nα = 8 nα = 4 nα = 6

0 0 0 0 0 0 0
1 0 820 990 996 0 989
2 7 171 10 4 0 11
3 92 9 0
4 267 2
5 311 24
6 219 107
7 82 174
8 17 235
9 5 228
10 136
11 64
12 23
13 6
14 1

(25, 8, 16, 3) (66, 15, 16, 3)

d nα = 9 nα = 10 nα = 11 nα = 12 nα = 12

0 0 0 0 0 0
1 0 0 0 0 0
2 4 100 100 100 10
3 63
4 30
5 3

The complexity of Beullens forgery attack is determined by R = rank(ER). Accord-
ing to Table 11 above, we estimate the complexity as

CompForgery1 = MQHashimoto(ln− l2m+R,R, q) · (2 · (log2 q)2 + log2 q). (5.22)

gates, for all parameter sets, R = l2m− l + 1.
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5.2.4 Forgery Attack Proposed by Cabarcas et al.

We first describe the forgery attack in [16] against Round 1 SNOVA public map. In
[16], the authors focus on the structure of the equation

ut (Sa)⊗n [Pi]
(
Sb
)⊗n

u, i ∈ {1, . . . ,m}, a, b ∈ {0, . . . , l − 1}. (5.23)

For any system where the quadratic part takes the above form, it is referred to as
a SNOVA system. The authors propose a multi-XL-like algorithm to solve SNOVA
systems, based on the observation that the ideal I, generated by the quadratic
part of 5.23, is Fq[S]-stable. By applying an appropriate change of variables to the
ideal I, they obtain a stable ideal under the action of a cyclic diagonal group of
matrices. This transformation results in a polynomial system with a multi-degree
homogeneous structure, which their XL-like algorithm effectively leverages.

In [16], the authors demonstrate that their XL-like algorithm can also improve the
forgery attack described in [11]. Unlike the approach in [11], their method relates
the forgery of a document D to solving a SNOVA system while preserving the
multidegree homogeneity of the lifted system.

We summarize their forgery attack in several steps:

- As in Beullens attack, the SNOVA public map can be written as

P̃ (U) =
l−1∑
j=0

l−1∑
k=0

Ej,k · B(uj,uk).

Similarly, they define uj = R⊗n
j u0 where Rj ∈ Fq[S]. Then, we will have

P̃ (u0) = ER · B(u0,u0)

The matrix ER may have rank defect.

- Let rank(ER) = mr. Then, for a target document D, the attacker samples
a salt such that the vector Hash(Hash(D)||salt) ∈ Fl2m

q lies in the column
space of ER. The probability of this occurring is

qmr−l2m =
qmr

ql2m

. Therefore, the cost of this step is

ql
2m−mr · l6.

- Let rank(ER) = mr. The attacker can find a set of p = l2m − mr linearly
independent vectors w1, . . . , wp ∈ Fl2m

q in the kernel of ER. Then, the attacker
obtains a forgery by solving the system

w = B(u0,u0) +

p∑
i=1

yiwi,
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for u0 over Fln
q and y1, . . . , yp ∈ Fq. In this case, we are working with the

multi-degree d∗ ∈ Zl
≥0 such that

0 ≥ [td]H(t1, . . . , tl) + p ·
∑

d≤d∗,d̸=d∗

[td]H(t1, . . . , tl),

where

H(t1, . . . , tl) =

∏
1≤i<j≤l

(1− titj)
2o ·

l∏
i=1

(1− t2i )
o

l∏
i=1

(1− ti)
ol− k

l

.

The cost of this step is estimated by

min
p≤k≤l2o, l|k

qk−p · 3
(
ol − k

l

)2

·
[
M̃(d∗)

]2
·
(
2 · (log2 ql)2 + log2 q

l
)
,

with M̃(d∗) =M(d∗) + p ·
∑

d≤d∗,d̸=d∗M(d), whereM(d) is the number of
monomials of multi-degree exactly d.

- Finally, The total cost of this forgery attack is estimated by the maximum of
the above two steps.

Analysis of the attack against Round 2 SNOVA public map. Similar to
Beullens’ attack, their forgery attack is also greatly affected by the rank of the ER

matrix. Under the Round 2 SNOVA public map, the ER matrix is no longer a block
diagonal matrix with identical diagonal blocks. ER is now a l2m× l2m matrix and
all blocks are determined by different sets of ABQ matrices.

Let rank(ER) = R. In this case, the complexity of finding the salt in their attack
is estimated by

CompFindingSalt = ql
2m−R · (l2o)3.

For all parameter set, we have R = l2m − l + 1. The attacker can find a set of
p = l2m − R linearly independent vectors w1, . . . , wp ∈ Fl2m

q in the kernel of ER.
Then, the attacker obtain a forgery by solving the system

w = B(u0,u0) +

p∑
i=1

yiwi,

for u0 over Fln
q and y1, . . . , yp ∈ Fq. In this case, we are working with the multi-degree

d∗ ∈ Zl
≥0 such that

[td]H(t1, . . . , tl) + p ·
∑

d≤d∗,d̸=d∗

[td]H(t1, . . . , tl) ≤ 0

where

H(t1, . . . , tl) =

∏
1≤i<j≤l

(1− titj)
2o ·

l∏
i=1

(1− t2i )
o

l∏
i=1

(1− ti)
ol− k

l

.
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The cost of this step is estimated by

CompSolve = min
p≤k≤l2o, l|k

qk−p · 3
(
ol − k

l

)2

·
[
M̃(d∗)

]2
·
(
2 · (log2 ql)2 + log2 q

l
)
,

with M̃(d∗) =M(d∗)+p·
∑

d≤d∗,d̸=d∗
M(d), whereM(d) is the number of monomials

of multi-degree exactly d.

Therefore, the complexity of the forgery attack proposed by Cabarcas et al is esti-
mated by

CompForgery2 = max(CompFindingSalt,CompSolve). (5.24)

It should be noted that our complexity estimation formula differs from those pre-
sented in the original paper [16]. The original paper contains minor typos in its
complexity estimation formula. Initially, we were unable to reproduce the complex-
ity results presented in their paper using the formula provided. After contacting
the authors, we confirmed the corrected complexity formula through private corre-
spondence. Using the updated formula, we were able to reproduce the complexity
results reported in their paper.

Remark 5.2. We observe that the forgery attacks proposed by Beullens and Cabarcas
et al. are significantly influenced by the rank of the ER matrix. In fact, when the
rank of the ER matrix is sufficiently close to l2m, those forgery attacks become
ineffective. For l = 2, 3, the minimal rank of the ER matrix is determined, and we
confirmed this through exhaustive search. When l = 4, 5, the ER matrix behaves
like a random matrix. This ensures that all our parameter sets meet the security
requirements defined by NIST against their forgery attacks.

In [65], we discussed matters related to the lower bound of the rank of ER that
ensures the Round 1 SNOVA parameter sets meet the NIST security requirements.
Among these, we analyzed Beullens’ forgery attack in [65]. Here, we aim to apply
the same concept to two forgery attacks proposed by Beullens in Section 5.2.3 and
Cabarcas et al. in Section 5.2.4. We calculated the corresponding lower bounds for
both of these forgery attacks. Considering these two attacks, we intend to compare
these lower bounds and the expected minimal rank to demonstrate that SNOVA is
sufficiently secure.

With Round 2 adjustments, the result is that the matrix ER ∈ Fml2×ml2

q will no
longer be a block diagonal matrix with identical blocks but a ml2 × ml2 matrix
in general. The effectiveness of these forgery attacks come from the fact that the
MinRank of ER is not enough to resist the attacks. More precisely, if every diagonal
block of ER is identical, then the solution of MinRank problem of ER = Ẽ⊗m

R

shares the same solution of MinRank problem of ẼR which is much smaller in size.
However, it is different in the case of Round 2 SNOVA, the MinRank problem will
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become a MinRank problem of more general matrices. This makes forgery attacks
much less effective. The following table records the lower bound of the rank of ER

that makes SNOVA parameter set satisfy the NIST security requirements.

Table 13: The lower bounds of rank(ER) against forgery attacks that makes SNOVA
parameter sets satisfy the NIST security requirements. The numbers with “∗” de-
pend on the heuristic prediction.

SL (v, o, q, l) emr lbd1
emr+lbd1

2
+ l lbd2

I
(37, 17, 16, 2) 67 52 61.5 60
(25, 8, 16, 3) 70 49 62.5 62
(24, 5, 16, 4) 77 52 68.5 67

III

(56, 25, 16, 2) 99 79 91 91
(49, 11, 16, 3) 97 83 93 91
(37, 8, 16, 4) 125 78 105.5 105
(24, 5, 16, 5) 121 63 97 97∗

V

(75, 33, 16, 2) 131 106 120.5 122
(66, 15, 16, 3) 133 110 124.5 124
(60, 10, 16, 4) 157 113 139 137
(29, 6, 16, 5) 146 84 120 120∗

In Table 13, “emr”, “lbd1”, “lbd2” denote the expected minimal rank of ER, the
lower bound of rank(ER) that ensures SNOVA parameter sets meet the NIST secu-
rity requirements for the forgery attack proposed by Beullens in Section 5.2.3 and
the lower bound of rank(ER) that ensures SNOVA parameter sets meet the NIST
security requirements for forgery attack proposed by Cabarcas et al. in Section 5.2.4,
respectively.

For the parameter sets with l = 2, 3, we fixed the seed used to generate the ABQ
matrices. In this case, the minimal rank of ER is the same as the expected minimal
rank. For the parameter sets with l = 4, the expected minimal rank of (ER) is
emr. As mentioned above, the probability of a rank drop d ≥ 7 is neglibile when
l ≥ 4 so using emr is justified. From the Table 13 above, it can be observed that
the value emr+lbd1

2
+ l can serve as a heuristic estimate for lbd2. For the parameter

sets with l = 5 we estimate lbd2 based on the heuristic estimate. As the security
margin is large, more than 20 bits, the SNOVA parameter sets for l = 5 will satisfy
the security requirements of Table 5 even if the heuristic is on the optimistic side.

5.3 Key Recovery Attacks

(v, o, q, l)-SNOVA as a (lv, lo, q)-UOV with l2m equations. Since the SNOVA
public key [P1] , . . . , [Pm] ∈ Matln×ln(Fq), it can be interpreted as the public key of a
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(lv, lo, q)-UOV scheme. Therefore, the key recovery attacks against the UOV scheme
can be executed on this (lv, lo, q)-UOV scheme. In this subsection, we analyze the
structure of this (lv, lo, q)−UOV defined by SNOVA public key and discuss the key
recovery attacks against this (lv, lo, q)-UOV. Note that the structure mentioned in
this section has similar discussions in [34, 37].

For key recovery attacks against UOV and its variants, the most important task
is to find the oil space T−1(O). Similarly, in SNOVA case, the task is to find the
oil space of the (lv, lo, q)-UOV induced from SNOVA public key [P1] , . . . , [Pm]. In
conclusion, once the oil space of the related (lv, lo, q)-UOV, T−1(O) is found, then
an equivalent key of SNOVA can be recovered. Here, the space O is defined by

O = {x = (x1, . . . , xln) ∈ Fln
q : x1 = · · · = xlv = 0} (5.25)

On the other hand, since the components of [T ] are in Fq[S], the private key [T ]
satisfying the identity over R

[T ] · S⊗n = S⊗n · [T ] (5.26)

where S⊗n =

S . . .

S

 = S · In is a n×n matrix over R. If we identify [T ] , S⊗n

as an ln× ln matrix over Fq then

[T ]−1 (O) = [T ]−1 S⊗n(O) = S⊗n [T ]−1 (O) (5.27)

Therefore, for each oil vector x ∈ [T ]−1 (O), we have

S⊗n · x, . . . , (S⊗n)l−1 · x ∈ T−1(O). (5.28)

In particular, for any x ∈ [T ]−1 (O) and j, k ∈ {0,. . . , l − 1}, we then have

xt · (S⊗n)j [Pi] (S
⊗n)k · x = 0, (i = 1, . . . ,m). (5.29)

Note that the Equation 5.29 directly implies that the UOV induced from the public
key of SNOVA is an (lv, lo, q)-UOV scheme with l2o equations.

(v, o, q, l)-SNOVA as (v, o, ql)-UOVs. In [41], Nakamura et al. proposed a
lifting method that reduces SNOVA to smaller UOV with v vinegar-variables and o
oil-variables over Fql . In [34, 37], a (v, o, q, l)-SNOVA is regarded as the a (lv, lo, q)-
UOV. The components of right-upper corner T 12 of private key [T ] are chosen from
the subring Fq[S], which is generated by the symmetric matrix S.

Since the symmetric matrix S is diagonalizable over the splitting field for its char-
acteristic polynomial. The lifting method in [41] transforms [T ] to a block diagonal

matrix [T̂ ] whose diagonal block components has the form of the private key for
smaller (v, o, ql)-UOVs. Namely, this is done by the Equation (9) in [41]

[P̂i]
(j,j) = [T̂j]

t · [F̂i]
(j,j) · [T̂j], 1 ≤ j ≤ l, 1 ≤ i ≤ m.
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These relations are considered as a connection between the public key and the private
key of UOV with the parameter set (v, o, ql). Specifically, by focusing on a single

diagonal block of [T̂ ], we can execute the traditional key recovery attacks on this
small (v, o, ql)-UOV.

5.3.1 Reconciliation Attack

The reconciliation attack proposed by [24] against UOV is trying to find a vector
o ∈ O by solving the system P (T−1(o)) = 0 and hence the basis of T−1(O) can
be recovered. This implies that P (T−1(o)) = 0 is a quadratic system that having
a solution space of dimension m. To expect a unique solution, we can impose m
linear constraints with respect to the components of o. Hence the complexity of this
attack is mainly given by that of solving the quadratic system of m equations in v
variables.

A reconciliation attack on SNOVA, if considered over Fq, is as an attack on an
(lv, lo, q)-UOV which is trying to find a vector x ∈ T−1(O). Thus, we are in the
case of solving the quadratic system

xt · (S⊗n)a · [Pi] · (S⊗n)b · x = 0, (i = 1, . . . ,m) (5.30)

where a, b ∈ {0, . . . , l − 1}, which results in l2m equations in lv + 1 = ln− (lo− 1)
variables. Hence the complexity of reconciliation attack is

CompReconciliation1 = MQHybrid(lv + 1, l2m, q) · (2 · (log2 q)2 + log2 q) (5.31)

gates for the classical attacker.

5.3.2 Kipnis-Shamir Attack (UOV Attack)

The KS attack [36] is trying to find an equivalent private key [T ]. If an attacker
can recover [T ], then he can recover the oil space T−1(O). In [8, 36], it shows
that T−1(O) is an invariant subspace of [P ′

i ]
−1 [P ′

j

]
. The KS attack is trying to

find a vector in T−1(O). Once one such vector is found, then we expect that the
whole space T−1(O) can be recovered efficiently by using method in [8]. A vector
in T−1(O) can be expected to be found with qv−o attempts. Note that if there are
[P ′

i ]’s not invertible, then we can replace [P ′
i ] with invertible linear combinations of

[P ′
i ]’s randomly chosen and the cryptanalysis of KS attack remains the same.

Since the SNOVA public key [P1] , . . . , [Pm] ∈ Matln×ln(Fq), it can be interpreted as
the public key of a (lv, lo, q)-UOV scheme. Therefore, an attacker can execute KS
attack on the (lv, lo, q)-UOV induced from SNOVA public key [P1] , . . . , [Pm]. Thus,
the complexity is

CompKS = qlv−lo · (2 · (log2 q)2 + log2 q) (5.32)
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gates for the classical case.

5.3.3 Intersection Attack

In [8], Beullens proposed the intersection attack to attack UOV scheme. It uses
the polar form of the public key P , that is, P ′ = [P ′

1, · · · , P ′
m] with P ′

i (u1,u2) =
u1

t [P ′
i ]u2 where [P ′

i ] = [Pi] + [Pi]
t. The intersection attack is trying to first find a

vector y in the subspace, namely the intersection
(
[P ′

i ] (T
−1O)

)
∩
( [

P ′
j

]
(T−1O)

)
where [P ′

i ] ,
[
P ′
j

]
are invertible, and then to obtain an equivalent key by recovering

the subspace T−1(O). Since ([P ′
i ]
−1)y, (

[
P ′
j

]−1
)y ∈ T−1(O), we obtain the following

system. 
P
( (

[P ′
i ]
−1)y) = 0

P
(
(
[
P ′
j

]−1
)y
)
= 0

P ′
(
([P ′

i ]
−1)y, (

[
P ′
j

]−1
)y
)
= 0

(5.33)

In case of intersection attack against SNOVA, the possible strategy is attack the
(lv, lo, q)-UOV corresponding to SNOVA [34]. The attacker is trying to find a vec-

tor y ∈
(
[L1] (T

−1O)
)
∩
(
[L2] (T

−1O)
)
where [L1] , [L2] are two invertible linear

combinations of the matrices [Pi]’s of size ln × ln over Fq. Then, since [L1]
−1 y,

[L2]
−1 y ∈ T−1(O), we have

(
[L1]

−1 y
)t · (S⊗n)j [Pi] (S

⊗n)k ·
(
[L1]

−1 y
)
= 0(

[L1]
−1 y

)t · (S⊗n)j [Pi] (S
⊗n)k ·

(
[L2]

−1 y
)
= 0(

[L2]
−1 y

)t · (S⊗n)j [Pi] (S
⊗n)k ·

(
[L1]

−1 y
)
= 0(

[L2]
−1 y

)t · (S⊗n)j [Pi] (S
⊗n)k ·

(
[L2]

−1 y
)
= 0

(5.34)

The case v < 2o. Since dim
(
[L1] (T

−1O)
)
∩
(
[L2] (T

−1O)
)
≥ 2lo − lv > 0,

then the system 5.34 reduces to a homogeneous quadratic system of M = 4l2o− 2l
equations in N = ln− (2lo− lv− 1) = 2lv− lo+ 1 variables. Hence the complexity
is

CompIntersection = MQHybrid(N,M, q) · (2 · (log2 q)2 + log2 q) (5.35)

gates.

The case v ≥ 2o. If n ≥ 3m, then there is no guarantee that the intersection(
[P ′

i ] (T
−1O)

)
∩
( [

P ′
j

]
(T−1O)

)
will exist. Therefore, the intersection attack be-

comes a probabilistic attack against SNOVA. In this case, the complexity is

CompIntersection = min
k

qlv−2lo+1+k ·MQHybrid(N − k + 1,M, q) · (2 · (log2 q)2 + log2 q)

(5.36)
gates where N = ln,M = 4l2o− 2l.
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5.3.4 Lifting Reconciliation Attack

Following the lifting method proposed in [41], the attacker can execute the Rec-
onciliation attack on the (v, o, ql)-UOV scheme derived from SNOVA. Notably, for
our parameter sets with l = 2, 3, 4, 5, the condition mo2 ≥ vo is satisfied. Con-
sequently, the (full) Reconciliation attack involves solving an overdetermined MQ
system. For the lifted Reconciliation attack, our complexity estimation aligns with
the estimation presented in [41].

Let c = min{a | a2m > av}. Notably, c represents the smallest value for which the
system in the Reconciliation attack becomes overdetermined. An attacker can first
attempt to solve this subsystem within the (full) Reconciliation attack framework.
Afterward, the remaining subsystems can be solved sequentially. Consequently,
the overall complexity of the attack is dominated by the cost of solving the first
subsystem.

The complexity is estimated by

CompLiftingReconciliation = MQHybrid(cv, c
2m, ql) · (2 · (log2 ql)2 + log2 q

l) (5.37)

gates.

5.3.5 Lifting Kipnis-Shamir Attack

Via lifting approach in [41], a (v, o, q, l)-SNOVA can be reduced to small UOVs
with parameter (v, o, ql). Therefore, an attacker can apply KS attack to these small
UOVs. The complexity is estimated by

CompLiftingKS = (ql)v−o · (2 · (log2 ql)2 + log2 q
l) (5.38)

gates.

5.3.6 Lifting Intersection Attack

An attacker can apply the Intersection attack to this (v, o, ql) UOV. Similar to the
complexity estimation in Section 5.3.3 and [41], the complexity of lifting Intersection
attack is estimated by

CompLiftingIntersection = MQHybrid(N,M, ql) · (2 · (log2 ql)2 + log2 q
l) (5.39)

gates where M = 4m− 2 and N = n− (2o− v) when v < 2o and

CompLiftingIntersection (5.40)

=min
k

(ql)v−2o+1+k+c ·MQHybrid(N − k + 1,M, q) · (2 · (log2 ql)2 + log2 q
l) (5.41)
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gates where N = min{n, 4m− 2},M = 4m− 2 and c = max{n− 4m + 2, 0} when
v ≥ 2o.

5.3.7 Reconciliation Attack Proposed by Cabarcas et al.

In [16], the structure of the stable ideal also appears in the system of equations
solved in the reconciliation attack. Therefore, the algorithm they proposed can also
be applied to the reconciliation attack. In this enhanced reconciliation attack, the
attacker needs to solve a SNOVA system with lv variables and l2m equations.

In this case, we are working with the multi-degree dsol ∈ Zl
≥0 such that

[tdsol ]H(t1, . . . , tl) ≤ 0

where

H(t1, . . . , tl) =

∏
1≤i<j≤l(1− titj)

2o ·
∏l

i=1(1− t2i )
o∏l

i=1(1− ti)
ol− k

l
+1

.

The cost of this attack is estimated by

CompReconciliation2 (5.42)

= min
1≤k≤l2o, l|k

qlv−l2o · qk · 3
(
ol − k

l

)2

·
[
M(dsol)

]2 · (log2 ql)2 + log2 q
l) (5.43)

gates whereM(dsol) is the number of monomials of multi-degree less than dsol.

In [16] and Table 9, for l = 2, 3, 4, we observe that the improvement proposed by
Cabarcas et al., compared to the Reconciliation attack, is approximately ql+1.

For the parameter set with l = 5, computing the exact complexity of the Rec-
onciliation 2 attack is not feasible with our current methods. However, based on
the observations above, we provide a heuristic estimation for the complexity of the
l = 5 parameter set. Specifically, we estimate the improvement brought by the
Reconciliation 2 attack for the l = 5 parameter set as ql+1 = 224. Consequently, the
heuristic complexity estimates (in log2(♯gates)) of the Reconciliation 2 attack for
the (24, 5, 16, 5) parameter set is 281− 24 = 257, and for the (29, 6, 16, 5) parameter
set, it is 334− 24 = 310.

5.4 Side-Channel Attacks

Recently, a number of papers have appeared that study additional possibilities for
side-channel attacks on SNOVA [1, 2, 46]. Masking of the Gaussian elimination
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step of the sign function is discussed in [46] for multiple NIST Round 2 candidates.
Hardware related attacks specifically for SNOVA are studied in [2] and for more UOV
signature schemes in [1]. The attacks described in these papers will be studied during
Round 2. The specification and the implementation of SNOVA will be updated
whenever a proposed countermeasure is considered to be either necessary or cost-
effective in terms of impact on the performance.
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6 Advantages and Limitations (2.B.6)

6.1 Advantages

The main advantages of SNOVA are as follows.

- Small public key sizes and signature sizes: As an MQ-based signature
scheme, SNOVA’s signature sizes are typically small. However, SNOVA also
enjoys very small public key sizes. Even at NIST security level III, we could
have a pair of public key size ≈1579 bytes and signature size ≈379 bytes.

- Modest computational requirements: During the signing and verification,
we only need to do simple matrix operations over a finite field. Thus, it can
be easily implemented on mobile devices.

- Small secret key: We can use two seeds combined to form a seed-type secret
key, which is as small as 48 bytes.

- A wide security margin: We are very conservative in our security analysis,
thus providing a wide security margin. To illustrate our conservatism, we note
that our l = 4 parameter set at SL III actually satisfies the requirements at
SL V for all currently known attacks.

- Simple arithmetic: Although the core idea of SNOVA involves the use of
a noncommutative ring, the underlying basic operations to achieve the goal
are essentially linear algebra. Therefore, once the nuances of the delicate
design are understood, the simplicity of the SNOVA is really almost UOV,
plus noncommutativity.

It is worth mentioning that, the protocol TLS, which is used to protect our web
browsing, will be no longer be secure due to the impact of quantum computers
as pointed out in [68, 69]. Making TLS post-quantum is an important task, but
such a fundamental change could take years and be quite costly if we do not have
a quantum-resistant signature that is relatively well compatible with the existing
framework. In particular, [69] gives the corresponding condition: six times signature
size and two times the public key size fit in 9KB. According to its specification,
SNOVA could be a more practical general-purpose signature scheme.

6.2 Limitations

- No provable security: SNOVA, like all known MQ-based cryptosystems,
has no provable security. However, if we take our coefficients in the noncom-
mutative ring to be solely in the center of it, then SNOVA is reduced to a
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small UOV. Since UOV is a well-studied case, we have strong confidence in
the security of SNOVA.

- Performance trade-off: Unavoidably, there is a trade-off between public key
size and performance. Under the premise of being conservative about security,
the parameter sets we proposed remain practical for implementation.

- Selection of l in Matl×l(Fq): Our actual implementation shows that the l
in Matl×l(Fq) will influence the size of public key and signatures. Keeping the
same level of security, the bigger l will result in smaller public key size but
larger signatures.
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A Rectangular SNOVA

During our process of making adjustments to SNOVA, we discovered an alternative
method that ensures the ER matrix achieves full rank. As a byproduct of our
research, we provide a brief introduction to this variant in the Appendix. Through
this approach, we aim to demonstrate the flexibility of the SNOVA scheme and its
variants.

Let v, o be positive integers with v > o and Fq be the finite field of order q. Let
n = v + o and m = o. Let r be a positive integer. The public map of a (v, o, q, l, r)
Rectangular SNOVA variant scheme is defined as follows:

We construct the public key [P1] , . . . , [Pm] via the congruence relation

[P1] =
[
P1,j,k

]
= [T ]t [F1] [T ] , . . . , [Pm] =

[
Pm,j,k

]
= [T ]t [Fm] [T ] .

Furthermore, we construct additional r public key [Pm+1] , . . . , [Pm+r].

The public map of SNOVA is P̃ = F̃ ◦ T . For i ∈ {1, 2, . . . ,m}, P̃i = F̃i ◦ T . We

define P̃i as

P̃i(U) = F̃i(T (U)) =
l2+l−1∑
α=0

n∑
j=1

n∑
k=1

Ai,α · U t
j (Qi,α,1Pi′,jkQi,α,2)Uk ·Bi,α

where i′ = (i+ α) mod (m+ r) and Pi′,jk is the (j, k)-th entry of matrix [Pi′ ].

Public key. The public key consists of the matrices [Pi] and the matrices Ai,α,
Bi,α, Qi,α,1 and Qi,α,2 for i = 1, . . . ,m+ r and for α = 0, 1, . . . , l2 + l − 1, or simply
the seed spublic that generates them. By utilizing matrices [Pi] and the seed spublic,

the verifier is able to obtain the public map P̃ and subsequently verify the received
signature.

Remark A.1. Compared to SNOVA, the introduction of additional r public keys
slightly increases the size of the public key. At the same time, the corresponding
ER matrix becomes a m × (m + r) rectangular matrix. In this scenario, ER can
easily achieve full rank.

Remark A.2. The rectangular public map introduced above can also be written as

P̃i(U) = F̃i(T (U)) =
l2+l−1∑
α=0

m+r∑
i′=1

C
(α)
i,i′

n∑
j=1

n∑
k=1

Ai,α · U t
j (Qi,α,1Pi′,jkQi,α,2)Uk ·Bi,α

where C
(α)
i,i′ = 1 if i′ = (i + α) mod (m + r) and C

(α)
i,i′ = 0 for all other values.

Another extension of SNOVA is to use another choice for C
(α)
i,i′ such as a set of

random matrices.
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